'xi‘ ‘i

%OAK RIDGE

~National Laboratory

LEADERSHIP
COMPUTING
FACILITY

Oct. 15, 2025 | HPC Best Practices Webinar

Sustainable HPC Software:
A Maintainer's Perspective

Damien Lebrun-Grandié

Computational Sciences and Engineering Division

«:/ U.S. DEPARTMENT  ORNL IS MANAGED BY UT-BATTELLE LLC
\@/ of ENERGY  FORTHE US DEPARTMENT OF ENERGY

- £



Clarifying the Focus: What is “Software Sustainability”?

Working Definition:
The ability for a software project to remain useful and relevant for at least twice its currently projected lifespan.

Focus: Longevity of the codebase and community.
NOT primarily about reducing power consumption (which is Environmental HPC Sustainability).

The Three Pillars of Technical Longevity:
« Adaptability: The ability to be ported to new architectures and adapt to new standards/toolchains
« Maintainability: Ease of fixing bugs and adding features without breaking existing functionality

» Resilience: The health and size of the contributor community

%OAK RIDGE | &55ie

National Laboratory | FACILITY



What Does A Maintainer Do?

» Loosely aware of the entire project

« Track ongoing work and make sure that it gets
reviewed and merged in a timely manner

* Direct the orchestra of developers and reviewers
» Has final responsibility

« Reviews when no reviewer can be found for
an important contribution

» Develops when no developer can be found to
fix an important bug

If something goes wrong, it's eventually the
maintainer’s fault

%OAK RIDGE | &55ie

National Laboratory

FACILITY

The Maintainer's Charter:
Steward and Strategist

The Project B % The Workflow
Stevard Director

The Gatekeeper
& Enforcer

Final Authority



The HPC Software Paradox

The Problem: We rely on complex,
foundational HPC software for
world-changing science, but the
maintenance often lacks resources
and spotlight.

The Ask: What does it take to
sustain a foundational project?

%Qf\l( RIDGE | &55ie

ional Laboratory | FACILITY

WORLD-CHANGING SCIENCE

OVERLCOKED MAINTENANCE

°




Talk Roadmap

%

Bus Factor

OAK RIDGE | sioisie

National Laboratory | FACILITY

j
ouT
I

OR ENTER.

I'M A SPEC
NOT A COP



My Perspective: The Kokkos Lens Py
w kokkos

Kokkos in a few numbers: Stewarding the scientific computing software
14 years old project ecosystem presents unique challenges.
250k LoC

I'll use examples from my experience as Kokkos

162 contributors S
maintainer to explore these challenges.

30+ active developers from 8 institutions

50% ECP C++ software technologies and applications
2.4k users registered on Slack

2.3k stars on GitHub My journey:

1 citation per day User -> Contributor -> Developer -> Maintainer/Lead

Kokkos' reach necessitates careful maintenance.
Carelessness: not catastrophic, but costly.

%OAK RIDGE | &55ie

National Laboratory | FACILITY



LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

Bus Factor:
How Vulnerable is
Your Project?

§ % US.DEPARTMENT  opN| |S MANAGED BY UT-BATTELLELLC
04 of ENERGY  FORTHE US DEPARTMENT OF ENERGY

Generated by Gemini



Managing Critical Vulnerabilities: The Bus Factor

Definition: The risk that a single person
(or small group) leaving the project (“hit
by a bus”) would halt or severely impair
development.

It's not just a joke; it's a structural flaw.

%OAK RIDGE CONPUTING
FACILITY

1 Labor:

ALL MODERN DIGITAL
INF RASTRUC TURE

ﬁﬁﬁ A PROTECT SOME

RANDOM PERSON

J IN NEBRASKA HAS

| BEEN THANKLESSLY

MAINTAINING

SINCE 2003

J

https://xkcd.com/2347/



Analyze Your Contributor Dependency

- 4 .
b [Kokkos Project £ Oct 7, 2024 - Oct 7, 2025

Contributors leaderboard

All activities

Contributor Total contributions
9 Damien Lebrun-Grandie 4101-17%
'a Daniel Arndt 2,247 - 9%
e Christian Trott 1,626 - 7%
5

@ Carl Pearson 1,592 - 6%
0 Jakob Bludau 1,530-6%
0 Maarten Arnst 1,464 - 6%
Nicolas Morales 1,359 - 6%

@ Luc Berger 1,328 - 5%
. Yuuichi Asahi 1105 - 4%
@ Tomasetti Romin 901-4%

CILFX Insights

OAK RIDGE | gt

National Laboratory | FACILITY

What it is: Measures how much
the project depends on its most
active individual contributors.

Why it matters: Highlights risk
areas if key contributors leave.

Useful for sustainability planning

and succession strategy.

24 .
| Kokkos Project

Contributor dependency

(2] All activities

%% 6 contributors
A 51% of all contributions

Top contributors

Contributor

e Damien Lebrun-Grandie

'& Daniel Arndt

e Christian Trott

7Y
Carl Pearson
L
o Jakob Bludau

CILFX Insights

Allrights reserved

£ Oct 7, 2024 — Oct 7, 2025

Other 152 contributors
49% of all contributions

Total contributions

4101-17%
2,247 - 9%
1,626 - 7%
1,592 - 6%

1,530 - 6%



Elephant Factor

24 .
| Kokkos Project

Organization dependency

(] All activities

2 organizations
69% of all contributions

Top contributors

Organization

Oak Ridge National Laboratory

Sandia National Laboratories

Commissariat a I'Energie Atomique Et aux Energi
University Of Liege

Japan Atomic Energy Agency

CILFX Insights

%OAK RIDGE | &55ie

National Laboratory | FACILITY

) Oct 8, 2024 — Oct 8, 2025

Other 44 organizations
31% of all contributions

Total contributions

8,376 - 37%
6,986 - 31%
1,591- 7%
1,477 - 7%

1,049 - 5%

What it is: Analyzes how much
of the project’s contributions
come from a small number of
organizations.

Why it matters: Reveals potential
over-reliance on single entities.
Projects with diverse
organizational support are
generally more robust.



Granularity in Bus Factor Analysis

%

OAK RIDGE | gt

National Laboratory | FACILITY

Overall Project Health

Project-level Entire Project

Repository-level
User Interface Repo  API/Backend Repo HPC-Core Algorithms Repo
(Team: 2 devs) (Team: 5 devs) (Team: 107 devs)

Module or

Higher Risk
Component-level

Module

2 ;c;fitical_auth.py
(Author: Alice)

File or Function-level |:
2 “I'(Bus Factor: 1)

Alice

Tacit Knowledge:

Decision History, Design
Philoosphy

Knowledge and
Skills-level

Python, Security UVUX, JavaScrift ~ C++ HPC Algorithms




Bus Factor: Lessons from Kokkos

1. The Foundational Risk: Original Team

Vulnerability

The Threat: Lost 2 of 3 original developers over 14
years.

Current Reality: Core resilience still relies heavily on
co-lead.

Lesson: Longevity demands proactive knowledge
decentralization.

2. The Stress Test: The "Quadruple Hit" Exodus

3. Mitigation: Decentralizing Knowledge &

Infrastructure

The Crisis: Lost 4 main developers back-to-back
(Google/AMD).
Impact:
- Build system overhaul (departing developer)
- High-visibility subproject with no testing
- Loss of the designated build system backup
Lessons: Multiple single points of failure create
systemic risk.

%OAK RIDGE

National Laboratory

LEADERSHIP
COMPUTING
FACILITY

Auto-Tuning Subproject Success:
- Initial risk from maintainer departure (KokkosTools).
- Mitigation: Design documentation and external
consultant enabled successful handover and blog-
post-worthy advancement.
- Insight: Process & shared design prevent
collapse.

Testing Infrastructure Resilience:

- Problem: Single person handled all testing.

- Solution: Diversified testing load across partner
organizations (on-prem, open-source, HPSF).

- Impact: Engaged more developers in maintenance;
mitigated site failures.

- Insight: Redundancy in both people and systems.

12



Mitigation Strategy: Documentation & Process

Actionable Strategy 1: Mandatory, reviewed
documentation for all new features.

Actionable Strategy 2: Enforced code review across
different teams/individuals.

Actionable Strategy 3: Create a clear path for new

contributors to become maintainers (i.e., growing the
bus).

THE PROJECT TEAM

Key Takeaway: Growing the Bus

The goal isn't just to survive; it's to decentralize knowledge and grow the
contributor pool.

:_Q,OAK RIDGE

LEADERSHIP
. COMPUTING
National Laboratory

FACILITY




LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

The Silent Drag:
Technical Debt

§ &% US.DEPARTMENT gy |S MANAGED BY UT-BATTELLELLC
04 of ENERGY  FORTHE US DEPARTMENT OF ENERGY

Generated by Gemini



The Silent Drag: Technical Debt

Definition: Code or architectural choices made quickly today that

will slow down development tomorrow. \ i 1
The Issue: The debt interest (slowed velocity, more bugs) is paid TECHN‘CAL DEBT I Egr\"\'AND
in every subsequent development cycle. WWYD TSTAKGS
H7 T
50 LONG ToO
What is it? "Quick fixes" create future rework. ADD A NEW

Performance, scalability & maintainability suffer. :

Y Y WINDOW.
Sources: Deadlines, legacy code, evolving hardware, lack of
refactoring.

Impact: Slows development, increases bugs, hinders innovation,
burns out maintainers.

Maintainer's Reality: Constant patching, frustration, struggling to
keep up.

Solution: Prioritize refactoring, testing, documentation, and code
reviews.

*(,OAK RIDGE | &55ie

National Laboratory | FACILITY



Technical Debt: Lessons from Kokkos

1. The Architectural Blocker: Exascale Backend
Crisis

Mission: Develop new backends (HIP/SYCL) for
Frontier & Aurora.

Debt: Rigid architecture with centralized preprocessor
directives.

Impact: Blocked incremental development; new
backends were untestable until 70% complete.

2. The Fix: Refactoring for Adaptability
Solution: Converted backend "choke points” into a
modular plugin system.

Enablement: Developed new incremental tests to
guide and validate backend development.

Lesson: Proactive refactoring is an investment in
future adaptability.

LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

3. The Human Cost: The "Half-Baked Feature"

Trap
Problem: Experimental features pushed out for a

publication, then abandoned.

Impact: Maintainers are left to salvage/fix the code
with no recognition.

Lesson: Short-term incentives (publications) can
create long-term, uncredited maintenance burdens.

4. The Strategic Win: Offloading Debt via
Standardization

Strategy: Pushed Kokkos: :View abstraction to the
C++ standard, resulting in std: :mdspan (C++23).
Benefit: Shared the maintenance cost with the entire
C++ community.

Action: Back-ported mdspan to C++17 and refactored
Kokkos: :View to use it.

Lesson: The ultimate debt reduction is making your
problem a shared, community-supported solution.

16



Mitigation Strategy: Refactoring as a Feature

Actionable Strategy 1: Treat refactoring as a core
feature for every release cycle (e.g., dedicate 10% of
effort).

Actionable Strategy 2: Invest in robust, layered testing
to ensure refactoring doesn't break performance.

Actionable Strategy 3: Adopt modern C++ standards
to shed old, custom workarounds.

Key Takeaway: Pay Down the Principal
Don't wait for a crisis to fix core issues. Proactive maintenance is a feature.

Technical debt is not always avoidable, but it must be managed.
It's a hidden cost that significantly impacts long-term sustainability.

%OAK RIDGE | &55ie

National Laboratory

FACILITY



LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

CHANGES IN VERSION 10.17:
THE CPU NO LONGER OVERHEATS

Hyrum's Law: (VA MOD LD DOUN SHRCEBRR.
Implicit TR e
THIS VFDATE BROKE. MY WORKFLOW/!

Dependencies Bite AYCONTROL 0 1 50 e

CONFIGURED EMACS TO INTERPRET A
RAPID TEMPERATURE. RISE: As CONTROL.

ADVIN \JRTTES !
THAT'S HORRIFYING.,
[owGrieUserY WRITES:

LOGK, MY SETUP WORKS FOR ME.

JUsST ADD AN OPTION TO REENABLE
SPACEBAR HERTING,

§ &% US.DEPARTMENT gy |S MANAGED BY UT-BATTELLELLC
04 of ENERGY  FORTHE US DEPARTMENT OF ENERGY

https://xkcd.com/1172/



Hyrum's Law: Implicit Dependencies Bite

“With a sufficient number of users of an
API, it does not matter what you promise
in the contract:;

all observable behaviors of your system
will be depended on by somebody.”

LRAIE=): IU.1F |I_..!ﬂﬂ|§ I

CHANGES IN VERSION 10.17:
THE CPU NO LONGER OVERHEATS
WHEN YOU HOLD DOWN SPACEBAR.

COMMENTS:
LONGTIME UsERY WRIES:
THIS DFPATE BROKE. 1Y WORKFLOW/!
My CONTROL KEY 15 HARD ToREACH,
S0 I HOLD SPACEBAR INSTERD, wr_

CONFIGURED EMACS TO INTERPRET A
RAPID TEMPERATURE. RISE As CONTROL.

ADWIN \WJRITES
THATS HORRIFYING.

[owGrieUserY WRITES:

LOGK, MY SETUP WORKS FOR ME.
JUST ADD AN OPTION TO REENABLE
m%m&

EVERY CHRNGE BREAKS SOMEONES WORKFLOW.

%OAK RIDGE COMPUTING.

National Laboratory | FACILITY

https://xkcd.com/1172/




The Hidden Interface Of Your Software

The Problem in HPC: Users often rely on
undocumented implementation details for

performance tuning or subtle integration with other “Every observable behavior of your system will be depended on by someone.”

libraries (e.g., a specific memory layout, a private

header file). Changing an internal implementation for UsrWerkous

the better can break an ecosystem. ‘ | Wordous
Official API De Facto Used AP| S s

Y~ —_0 O X >
— ‘ 53\ ( . \
( | | just refactored this ) ( (s5) . My code is crashing \
& internal function! N \ ) (D) now! Why? )
3 7 %
N e G N R /,,)
T -

%OAK RIDGE | &55ie

National Laboratory | FACILITY



Hyrum'’s Law: Lessons from Kokkos
The Price of Internal Change

The Daily Grind: Refactors Break the Ecosystem
Problem: Valid internal refactors routinely broke downstream code (especially Trilinos).
Impact: Forced reverts and created a "culture of fear" around necessary internal changes.

Cause: Our Ambiguous Contract

Trilinos Inheritance: Our history as a sub-package set a precedent for disregarding API boundaries.
Our Fault: We failed to clearly define public vs. private headers, leading users to include private files like
<Kokkos View.hpp>.

Strategy 1: Building a Formal Contract

Action: Introduced "Backwards & Future Compatibility” guidelines.

The Rules: Forbade using internal symbols (e.g., Kokkos: : Imp1l: :, KOKKOS_IMPL_macros).

The Process: Enforced a slow, painful deprecation process over multiple releases before final changes could be
made.

% OAK RIDGE | &ipiie

National Laboratory | FACILITY

21



Hyrum'’s Law: Lessons from Kokkos
The Ultimate Test

The “View of Views” Saga

The Feature: Fixed a thread-safety issue for concurrent enqueuing.

The Collision: Broke code using "View of Views"—a pattern our programming guide explicitly discourages.
The Discovery: A wider call for feedback revealed the "illegal” pattern was pervasive across strategic
applications.

Strategy 2: Pragmatism & Adaptation

Diagnosis: We wrote a tool to detect semantic violations in older Kokkos versions.

Contingency: Added a "secret" configuration-time option to revert to the old, unsafe behavior (a temporary
escape hatch).

Adaptation: Ultimately had to invent new View semantics to officially support the common use case.

Strategy 3: Knowing When to Rollback

Rolled back optimizations (e.g., unpromised fences) when the cost of change was too high for the ecosystem.

The Maintainer's Lesson: The API is what users actually depend on, regardless of your documentation.

% OAK RIDGE | &ipiie

National Laboratory | FACILITY

22



Mitigation Strategy: Clear Boundaries & Deprecation

Actionable Strategy 1: Clearly define public vs. private
interfaces (enforced via namespaces, header files, or
tooling).

Actionable Strategy 2: Institute a formal deprecation
policy with a fixed "shelf life" for features (e.g., two
major releases).

Actionable Strategy 3: Invest in integration tests with
key downstream projects to catch hidden breaks
before release.

too realistic just right too abstract

Key Takeaway: The Cost of Change

Every change has a cost. Minimize this cost by rigidly defining the contract and
providing a clear transition path.

%OAK RIDGE | &55ie

National Laboratory | FACILITY



The Path to Sustainable HPC Software

Grow the Bus (Decentralize knowledge).

Pay Down the Principal (Refactor proactively).

Define the Contract (Manage Hyrum's Law with clear
boundaries).

Sustainable software requires proactive stewardship, not
just heroic coding.

?(.Qf\l( RIDGE | (655

ional Laboratory | FACILITY



The End =" HPSF

HIGH PERFORMANCE

Let's work together to build a future of sustainable, reliable, and
impactful HPC software!

Funding Acknowledgments:

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Next-Generation Scientific Software Technologies program, under
contract number DE-AC05-000R22725 (ORNL).

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC05-000R22725.

LEADERSHIP
COMPUTING
FACILITY

_y(,OAK RIDGE

National Laboratory




	Default Section
	Slide 1: Sustainable HPC Software: A Maintainer's Perspective

	Intro
	Slide 2: Clarifying the Focus: What is “Software Sustainability”?
	Slide 3: What Does A Maintainer Do? 
	Slide 4: The HPC Software Paradox
	Slide 5: Talk Roadmap

	Bus Factor
	Slide 6: My Perspective: The Kokkos Lens
	Slide 7: Bus Factor: How Vulnerable is Your Project? 
	Slide 8: Managing Critical Vulnerabilities: The Bus Factor
	Slide 9: Analyze Your Contributor Dependency
	Slide 10: Elephant Factor
	Slide 11: Granularity in Bus Factor Analysis
	Slide 12: Bus Factor: Lessons from Kokkos
	Slide 13: Mitigation Strategy: Documentation & Process

	Technical Debt
	Slide 14: The Silent Drag:  Technical Debt
	Slide 15: The Silent Drag: Technical Debt
	Slide 16: Technical Debt: Lessons from Kokkos
	Slide 17: Mitigation Strategy: Refactoring as a Feature

	Hyrum’s Law
	Slide 18: Hyrum’s Law: Implicit Dependencies Bite 
	Slide 19: Hyrum’s Law: Implicit Dependencies Bite
	Slide 20: The Hidden Interface Of Your Software
	Slide 21: Hyrum’s Law: Lessons from Kokkos The Price of Internal Change
	Slide 22: Hyrum’s Law: Lessons from Kokkos The Ultimate Test
	Slide 23: Mitigation Strategy: Clear Boundaries & Deprecation

	Wrap Up
	Slide 24: The Path to Sustainable HPC Software
	Slide 25: The End 


