W) Check for updates

nternational Journal of

HIGH PERFORMANCE
COMPUTING APPLICATIONS

Special Issue Paper

The International Journal of High
Performance Computing Applications
2025, Vol. 39(1) 167-176

© The Author(s) 2024

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420241298296
journals.sagepub.com/home/hpc

S Sage

Advances in ArborX to support exascale
applications

Andrey Prokopenko' ©, Daniel Arndt' @,
Damien Lebrun-Grandié' , Bruno Turcksin',
Nicholas Frontiere?®, J.D. Emberson® and
Michael Buehlmann?

Abstract

ArborXis a performance portable geometric search library developed as part of the Exascale Computing Project (ECP). In
this paper, we explore a collaboration between ArborX and a cosmological simulation code HACC. Large cosmological
simulations on exascale platforms encounter a bottleneck due to the in-situ analysis requirements of halo finding, a problem
of identifying dense clusters of dark matter (halos). This problem is solved by using a density-based DBSCAN clustering
algorithm. With each MPI rank handling hundreds of millions of particles, it is imperative for the DBSCAN implementation
to be efficient. In addition, the requirement to support exascale supercomputers from different vendors necessitates
performance portability of the algorithm. We describe how this challenge problem guided ArborX development, and
enhanced the performance and the scope of the library. We explore the improvements in the basic algorithms for the
underlying search index to improve the performance, and describe several implementations of DBSCAN in ArborX.
Further, we report the history of the changes in ArborX and their effect on the time to solve a representative benchmark
problem, as well as demonstrate the real world impact on production end-to-end cosmology simulations.

Keywords
Geometric search, clustering, kokkos, GPU, DBSCAN, cosmology

The primary goal of ArborX is to support DOE ap-
plications at scale. Initially developed within the Data-
TransferKit library (Slattery et al., 2013), ArborX became
a standalone library in early 2019 when it became clear
that many other applications could benefit from its
functionality. Since then, ArborX experienced a signifi-
cant growth in the number of users and the diversity of
use cases. ArborX now includes a wide variety of al-
gorithms that depend on the spatial proximity in the data:
range and nearest searches, clustering, ray tracing, and
interpolation.

I. Introduction

ArborX is a performance portable geometric search library
(Lebrun-Grandié et al., 2020). ArborX was developed as
part of the Exascale Computing Project (ECP) (Messina,
2017), a multi-year US Department of Energy (DOE)
program. The ECP aimed to provide an exascale computing
ecosystem for DOE mission-critical applications from many
different domains, including cosmology, combustion, ma-
terial science, and additive manufacturing.

The complexity and the size of the DOE applications
requires enormous computational resources. DOE funded
supercomputers, such as Frontier (OLCF, 2022), Perl-
mutter (NERSC, 2022), and Aurora (ALCF, 2023), differ

in their hardware architectures, providing GPU acceler-
ators from distinct vendors (AMD, Nvidia, and Intel,
respectively). Given that more than 95% of the perfor-
mance of each system is coming from these accelerators,
it is critical for a software library to be performance
portable.

'Oak Ridge National Laboratory, Oak Ridge, TN, USA
2CPS Division, Argonne National Laboratory, Lemont, IL, USA

Corresponding author:

Andrey Prokopenko, Oak Ridge National Laboratory, | Bethel Valley Rd,
Oak Ridge, TN 37831, USA.

Email: prokopenkoav@ornl.gov


https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420241298296
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0003-3616-5504
https://orcid.org/0000-0001-8773-4901
https://orcid.org/0000-0003-1952-7219
https://orcid.org/0009-0005-8598-4292
https://orcid.org/0000-0003-1406-0744
https://orcid.org/0000-0002-8469-4534
mailto:prokopenkoav@ornl.gov
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420241298296&domain=pdf&date_stamp=2024-11-08

168

The International Journal of High Performance Computing Applications 39(1)

In this paper, we explore a collaboration of ArborX with
a selected exascale cosmology application that occurred
over the 2020 — 2023 period.

The Hardware/Hybrid Accelerated Cosmology Code
(HACC; Habib et al. (2016); Frontiere et al. (2023)) is an
extreme-scale cosmological simulation framework. The
HACC challenge problem includes simulations with over
ten trillion particles to produce the most detailed synthetic
sky maps ever made. In-situ analysis is crucial, as these
simulations would generate more than 100PB of data.
Consequently, the analysis suite has to scale, along with the
code. ArborX helps to address computational bottlenecks in
several analysis components. In this paper, we will focus on
one such area: identification of clusters within the full
particle set.

The paper is organized as follows. We present the im-
portance and the impact of ArborX improvements on the
performance of the analysis code in HACC in Section 2. We
provide the background information on the algorithm and
ArborX library in Section 3. We then describe performance
and algorithm improvements made in ArborX to achieve
these results in Section 4. Finally, we provide directions for
further growth in Section 5.

2. ArborX impact on production
simulations with HACC

Identification of halos (regions with a high density of dark
matter particles) is one of the most important analysis steps
in cosmology. A common technique for such identification
is to use density-based clustering techniques FOF (Friends-
of-Friends), which is a specific case of a general DBSCAN
(Density-based Spatial Clustering of Applications with
Noise) algorithm (Ester et al., 1996). DBSCAN relies on the
quick identification of particle neighborhoods, grouping
together points that are closely packed together while
marking the points in the low-density regions as noise
(outliers).

Here, we discuss the capability impact of incorporating
DBSCAN algorithm implementation developed in ArborX
within HACC by exploring a suite of full-scale end-to-
end cosmology simulations. The developments in Ar-
borX required to achieve this impact are described in
Section 4.

The results were measured on the Summit supercomputer
using 256 nodes, each equipped with 6 Nvidia V100 GPUs.
The domain volume is (576Mpc/h)’. We present results
from both a gravity-only simulation, featuring N = 2304°
particles, and a companion hydrodynamic simulation that
evolved twice as many particles to account for both dark
matter and gas particles individually. Both simulations trace
the evolution from the early universe (over 13 billion years
ago) to the present.

Figure 1 illustrates the complete measured computational
time (excluding I/O) of the gravity-only simulation over
625 long-range force steps (red curve). As the simulation
progresses, particles cluster, leading to an increase in solver
time. ArborX is utilized in approximately 100 analysis steps
during the simulation, with the most computationally de-
manding component being the FOF identification of dark
matter halos within the full particle set.

In a series of downscaled test simulations at the same
mass resolution, HACC has observed a significant speedup
in performance, ranging from 10 to 12 times faster for FOF
finding with ArborX when compared to a highly optimized
CPU OpenMP threaded algorithm.

To visually illustrate the impact of such a performance
boost in a production run, Figure 1 features a gray curve
conservatively representing a tenfold increase in FOF ex-
ecution time. This showcases, at a minimum, how slow the
solver would have been without ArborX. The gray spikes
corresponding to the 100 steps are now distinctly pro-
nounced, clearly highlighting the computational cost of
running analyses without GPU accelerated cluster finding.
The speedup ratio in the bottom panel indicates that even
with this conservative estimate, the full time-stepper shows
an improvement of approximately a factor of 2.

The ArborX optimizations are so impactful that HACC
can now perform analysis steps on every long-range force
simulation timestep. This capability is particularly impor-
tant for hydrodynamic simulations, where cluster finding
needs to be executed at a much higher cadence. Further-
more, ArborX enables the capability of performing in-situ
substructure finding within a simulation. Historically, this

60 T T T
—— Unoptimized (Projected)

—— Optimized

10

w
o

o
ot
T

Speedup
(3]
=)

—
ot
T

=

o
=)
n

100 200 300 400 500 600
Step

Figure |. Visualization of the performance impact of ArborX on
analysis steps for a production gravity-only cosmology
simulation.



Prokopenko et al.

169

task has necessarily been carried out in post-processing due
to its computational expense.

In the case of hydrodynamic simulations, gas particles
regularly evolve into stars, collectively forming galaxies.
Each analysis step in HACC requires the identification of
galaxies, achieved by running DBSCAN on all stellar
particles using minPts = 10. Figure 2 visualizes star particles
within one of the largest dark matter halos in the (576Mpc/
h)? simulation. The largest circle in the figure encloses the
full halo, and each DBSCAN-identified galaxy is marked
with a corresponding circle (using a radius equal to the
farthest particle from the center of the galaxy). Full particle
queries of this complexity would have been too expensive to
perform during a simulation prior to the incorporation of
ArborX into the analysis pipeline.

3. Background
3.1. DBSCAN algorithm

Here, we give a short overview of the bBScAN algorithm. For
more details, we refer the readers to Ester et al. (1996).
Let X be a set of n d-dimensional points to be clustered.
Let & and minPts be two given parameters. An &-neigh-
borhood of a point x is defined as N.(x)=
{yeX | dist(x,y) <e}, where dist(-, -) is a distance metric
(e.g., Euclidean). A point x with [N (x)|> minPts is called a
core point. A point y is directly density-reachable from a
point x if x is a core point and y € Ny(x). A point y is density-
reachable from a point x if there is a chain of points xy, ...,

Figure 2. Visualization of in-situ substructure finding of a large
particle cluster from a hydrodynamic simulation using
DBSCAN. Image credit: Azton Wells, Argonne National
Laboratory.

X, X1 =X, X,, =, such that x;,; is directly density-reachable
from x;. Two points x and y are called density-connected if
both are density-reachable from some point z € X. Finally,
any point that is not a core point but is density reachable
from one is called border point. The remaining points,
i.e., the points that are not core or border points, are called
noise. Noise points are considered to be outliers not be-
longing to any cluster. Any cluster then consists of a
combination of core points (at least one) and border points
(possibly, none). Figure 3 provides an illustration for a set of
points with minPts = 4.

The goal of a DBscaN algorithm implementation is thus to
find the individual clusters in a dataset efficiently.

3.2. ArborX library

In this Section, we give a brief introduction to geometric
search algorithms and the ArborX library, setting up a
background for performance improvements in Section 4.

The main index in ArborX is a bounding volume hier-
archy (BVH). BVH is a tree structure created from a set of
objects in a multi-dimension space. Each object is wrapped
in a geometric format (bounding volume) to form the leaf
nodes of the tree. Each node of a BVH is an aggregate of its
children, with the node’s bounding volume enclosing the
bounding volumes of its children. The bounding volume
around all objects, called scene bounding volume, is stored
at the root of the hierarchy.

As was demonstrated in Karras (2012), binary BVH is a
good choice for GPU-based searches, particularly for low-
dimensional data typical in the scientific applications. Fast
BVH construction algorithms use a space-filling curve
(Z-curve) to improve the spatial locality of the user data,
followed by a single bottom-up construction to produce a
binary tree structure (hierarchy). While the resulting quality
is somewhat worse than produced by the best available

Figure 3. Classification of points for bescaN with minPts = 4.
Core points are shown in red, border in blue, and noise are in

gray.



170

The International Journal of High Performance Computing Applications 39(1)

algorithms, the construction procedure is extremely fast and
produces a tree of sufficient quality in most situations.
During the search (also called a traversal), each thread (a
host or a GPU thread depending on the backend) is assigned
a single query, i.e., a spatial or k-nearest neighbor search
problem. All the traversals are performed independently in
parallel in a top-down manner. To reduce the data and thread
divergence, the queries are pre-sorted with the goal to assign
neighboring threads the queries that are geometrically close.
To reduce the software development cost, ArborX uses
Kokkos (Trott et al., 2022) for on-node parallelism to allow
running on a variety of commodity and HPC hardware,
including Nvidia, AMD, and Intel GPUs. Kokkos abstracts
common parallel execution patterns, such as parallel loops,
reductions, and scans (prefix sums), from the underlying
hardware architecture. In addition, Kokkos provides an
abstraction for a multi-dimensional array data structure
called View. It is a polymorphic structure, whose layout
depends on the memory the data resides in (host or device).
Kokkos supports both CPUs and GPUs (Nvidia, AMD,
Intel) through providing backends, e.g., OpenMP, CUDA,
SYCL, HIP. Using Kokkos allows running the same code on
CPUs or GPUs by simply changing the backend through a
template parameter, resulting in a higher developer
productivity.
Now, we briefly describe the scope of different focus
areas within ArborX.

3.1.1. Core functiondlity. ArborX supports two kinds of
search types: range and nearest. The range search finds all
objects that intersect with a query object. For example,
finding all objects within a certain distance is a range search.
The nearest search, on the other hand, looks for a certain
number of the closest objects, regardless of their distance.
Both searches support multi-dimensional data, with di-
mensions ranging 1-10.

These two search types require very different tree tra-
versal algorithms. The range query has to explore all nodes
in a tree that satisfy the given predicate. It can be im-
plemented in a stackless manner (see Section 4.2.1). In
contrast, the nearest search can terminate early while it has
found the best possible candidates. Nearest search is more
complicated to implement, and relies on a stack and a
priority queue structures.

ArborX provides both on-node and distributed (through
using MPI) implementations for both searches.

3.2.2. Clustering  functionality. ArborX provides im-
plementations for several clustering algorithms that depend
on distance calculations: DBscaN (the focus of this work)
and Euclidean minimum spanning tree (Prokopenko et al.,
2023b). There are ongoing efforts to provide an efficient
implementation for the HDBSCAN*! algorithm (Campello
et al., 2015).

3.2.3. Ray tracing functionality. ArborX provides basic sup-
port for ray tracing.

3.2.4. Interpolation functionality. ArborX implements moving
least squares interpolation algorithm (Quaranta et al., 2005).
In this method, support and subsequently the interpolation
operator are constructed through solving local least squares
problems defined by compactly supported radial basis
functions.

4. ArborX improvements

ArborX’s primary goal is performance. For a user, this
comes with an implicit agreement that ArborX will be
diligent in implementing features in a way that does not
slow down user applications. For this to happen, ArborX
uses several benchmarks to test proposed new functionality.

One of these benchmarks is the bBscaN algorithm for a
cosmology problem. The challenge problem for the HACC
project is a 12.2 trillion particle gravity-only simulation
with a companion hydrodynamic simulation that models
both gas and dark matter with 2 x 1.8 trillion points. A
downscaled version of the gas simulation was run using 2 x
1024° particles with (256Mpc/h)’ domain volume. For our
dataset, we used a snapshot from the last step of the sim-
ulation performed with HACC, when the clusters are clearly
formed. The data was taken from a single rank of the
original 64 MPI rank job, consisting of ~ 37M dark matter
particles (gas particles are excluded for cluster finding).
Figure 4 shows a 3D visualization of the data sample. The
value of ¢ was set to 0.0427.

Figure 5 shows the timeline of the improvements in
ArborX’s core search functionality together with the

Figure 4. Benchmark problem data sampled from a single rank.
The clusters are clearly formed.



Prokopenko et al.

171

x108

N
wv

Rate [points/s]
= N
w o

=
o

0.5 . @ @

®

0.0

® —o— Initial
—e— FDBSCAN
—e— FDBSCAN-DenseBox

2020 2021

2022 2023

Figure 5. Timeline of the ArborX improvements for the bescan benchmark problem (¢ = 0.042, minPts = 2) on an Nvidia A100 GPU.

algorithmic developments for this benchmark problem. The
code was run on an Nvidia A100 GPU. Here, we highlight
certain critical points which affected the performance:

(1) Initial implementation (Section 4.3.1)

(2) Initial introduction of FDBSCAN (Section 4.3.3) and
use of the callbacks (Section 4.1.1)

(3) Switching from using Karras construction algo-
rithm to Apetrei’s (Section 4.2.1)

(4) Switching to using stackless traversal (Section 4.2.1)
(5) Changing the callback in FDBSCAN to improve
minPts > 2 case

(6, 9) Switching
(Section 4.2.2)
(7) Using pair-traversal in FDBSCAN (Section 4.2.3)
(8) Initial  introduction  of  FDBSCAN-DENSEBOX
(Section 4.3.4)

to using 64-bit indices

It is clear that the most significant improvements to the
performance were the stackless traversal, the move from 32-
to 64-bit Morton codes, and the pair traversal for FDBSCAN.
Overall, the performance of the algorithm improved by
factor ~ 9.2, with the latest version clustering the full ~37M
benchmark problem in under 0.15s on an Nvidia A100.
Performance improvements were mostly monotonic, with
the exception for (5), which significantly improved the
FDBSCAN callbacks algorithm for minPts > 2 at the cost of a
slowdown for minPts = 2.

Initially, FDBSCAN-DENSEBOX performed significantly
better than FDBSCAN, however the latter became the faster
one for this problem with the introduction of the pair tra-
versal. There is ongoing research to integrate pair traversal
into the FDBSCAN-DENSEBOX algorithm.

We will now describe each interface, performance and
algorithmic improvement in more details.

4.1. Interface improvements

4.1.1. Callbacks. The original ArborX interface was de-
signed to handle the tasks of interest to the Data-
TransferKit library. The results were produced as a pair of
Kokkos views (offsets, values), with the values
view containing the values satisfying the predicates, and
the of fsets view containing the offsets into values
associated with each query. However, it was observed
that users are often interested in performing some op-
eration on the results of each query and not the results
themselves. For example, they may be only interested in
the number of neighbors, average distance, or updating
some quantity. In these cases, storing the results may be
unnecessary, penalizing both performance through
memory writes and memory usage. For some problems,
storing the found objects results in running out of
memory even for simple counting kernels.

To address this issue, we introduced the callback
functionality in ArborX. It allows execution of a user-
provided code on a positive match. Figure 6 demon-
strates the interface. Here, Predicate represents a search
query (e.g., an object to intersect with), and Value rep-
resents the data stored in the BVH. We support both pure
callbacks that perform a user operation without storing any
results, and callbacks that allow a user to modify the results
before storing them.

4.1.2. Early termination. One of the steps in the DBSCAN
algorithm is determination of the core points, i.e., the points
that have a specified number of neighbors within the radius.
To find them, we need to execute a traversal procedure.
It is, however, unnecessary to continue the procedure
once the threshold has been achieved and it has been es-
tablished that a point is a core point. Thus, we updated the
interface to allow a callback to indicate (through a return



172

The International Journal of High Performance Computing Applications 39(1)

struct Callback {

template<typename Predicate,

KOKKOS_FUNCTION

RT operator () (Predicate const &predicate,
Value const &value) const;

typename Value>

bi

struct CallbackWithOutput {

template<typename Predicate,
typename OutputFunctor>

KOKKOS_FUNCTION

void operator () (Predicate const &predicate,
Value const

typename Value,

&value,
OutputFunctor const &output) const;

}i

Figure 6. Callbacks interface. The return type RT could either be
void,orenumCallbackTreeTraversalControl. The
latter affects the traversal, allowing early termination (see Section
4.1.2).

value) whether the traversal should continue. For low values
of minPts, this saves a significant amount of time.

There are many other potential applications of this
feature. In general, if it is known that the traversal will
produce at most m answers, it can be stopped after achieving
that value. For example, a search for a mesh cell containing
a given particle in particle-in-cell simulations can be ter-
minated after the first such cell has been identified.

4.2. Core algorithms improvements

In this section, we describe improvements to the interface
and several optimization techniques to improve the per-
formance of the implemented DBscaN algorithms in
Section 4.3.

4.2.1. Stackless traversal. Stackless traversal is a technique to
avoid explicitly managing a stack of node pointers for each
thread during the traversal. Usage of stacks is undesirable as
it may lead to lower occupancy due to higher memory
demands per thread. The approach in Torres et al. (2009)
introduced a concept of rope (also called escape index), an
index of a node where the traversal should proceed if the
intersection test with the current node is not satisfied, or if
the node is a leaf node. In Figure 7, the references to the
right child (denoted by dotted lines) of the internal nodes are
removed, and the ropes (denoted curved arrows) are in-
troduced for both internal and leaf nodes. For the nodes on
the right-most path, the ropes point to the artificial terminal
node called sentinel.

Originally, ArborX used Karras’ approach (Karras,
2012) for the BVH construction. The way the Karras al-
gorithm orders internal nodes makes it possible to set the
ropes as part of the standard bottom-up hierarchy
construction.

o @ @ W

Figure 7. Hierarchy for stackless traversal. The references to
right children (dotted arrows) of the internal nodes 0-6 (orange)
are replaced with ropes (curved arrows). Additionally, each leaf
node 7-14, (green) now has a rope. The ropes of the nodes on the
right-most path point to the sentinel node S (yellow).

However, to improve the hierarchy construction time,
we switched to using Apetrei (2014) as the latter is more
efficient. The unfortunate side effect of the switch was
that the ropes had to be set separately, as Apetrei’s al-
gorithm orders internal nodes differently. However, we
were able to overcome this side-effect by finding a way to
recover Karras’ ordering from the Apetrei’s one. For
more details, see Prokopenko and Lebrun-Grandié
(2024).

4.2.2. 64-bit Morton codes. BVHs are often used in com-
puter graphics for ray tracing, with performance often
compared in terms of rays per second casted for rendering
a set of scenes presented as a set of surfaces (e.g., tri-
angles). One of the challenges of applying these algo-
rithms to scientific data is the difference in the range of
scales. It is common for the ratio between the densest and
the sparsest regions of scientific data to be several orders
of magnitude. This requires certain adjustments of the
algorithms.

Standard linear BVH (LBVH) (Lauterbach et al.,
2009) algorithms rely on space-filling curves (typically,
Z-order curve based on Morton codes) to organize the
spatial locality of the data. The case of two objects happen
to have the same Morton index resolved in an ad-hoc
manner. However, the scientific data may degrade se-
verely in this case. In our original implementation, we
used 32-bit Morton codes, meaning that each dimension
of the 3D problem was partitioned in 1024 bins. It turned
out that due to the very high density of the particles in
some regions, too many particles were assigned to the
same bin, i.e., having the same Morton code. For ex-
ample, for the benchmark problem at least 64% particles
shared their Morton code with at least one other particle,
with the maximum of 3,569 having the same index. This
resulted in decreased performance of the algorithms due
to the worse hierarchy quality.

We chose to address this problem by using the 64-bit
Morton codes. As we can see in Table 1, showing the



Prokopenko et al.

173

Table I. An overview of the hierarchy construction
differences between 32- and 64-bit Morton codes for the
benchmark problem.

32-bit 64-bit
#Duplicate codes (> 3 times) 1,311,912 0
#Points with duplicate code 23,539,027 528
max same code duplicates 3569 2
Number of hierarchy levels 43 49

statistics for the benchmark problem in, we eliminate
almost all duplicate Morton codes for our problem when
using 64-bit resolution. This becomes even more crucial
for larger problems.

Using 64-bit codes has two minor drawbacks. It slightly
increases the hierarchy construction cost due to the slower
sorting of the 64-bit integers compared to the 32-bit ones.
Additionally, increasing resolution in Morton codes will
typically result in a deeper hierarchy (in this case, 43 to 49).
However, we found the tradeoff worth it due to significant
speedup in traversal algorithms.

4.2.3. Pair traversal. Many computational problems, in-
cluding DBSCAN, can be seen as: given a radius ¢, find all
pairs (7, j) of points that are within distance ¢ of each other,
and execute some operation F(i, j) on the pair. In DBSCAN,
that operation is Union. In other applications, the operation
could be to compute a force (e.g., in molecular dynamics) or
to increase the value of the count (e.g., computing 2-point
correlations).

For this class of problems, each pair needs to be pro-
cessed only once. Regular traversal would process each pair
twice, once for each thread, resulting in unnecessary work.
Thus, a new approach is desired.

We implemented a new hierarchy traversal algorithm.
For a given point 7, instead of starting the traversal from
the root node 0, we start it with the leaf node corre-
sponding to this point. Combined with the ropes structure
described earlier, it guarantees that that only pairs (7, ;)
with i <j will be found, thus processing each pair exactly
once. Figure 8 demonstrates the traversal for a thread
corresponding to index 4. It is clear that a thread would
need to examine fewer nodes compared to the regular
traversal. This results in fewer memory accesses used
during the traversal, reduced number of distance com-
putations, and reduced number of applying the
operation F.

We explained the algorithm above for a tree with
ropes. It is possible to achieve a similar effect for a
regular tree with left and right children by masking
subtrees. This would impose certain requirement on the
ordering of the internal nodes, and an initial top-down
traversal.

Figure 8. An example of the tree traversal mask for a thread
corresponding to a point with index 4. The thread skips all
internal and leaf nodes in gray, and starts with the corresponding
leaf node 14 (pink), which is the 4-th leaf node. The traversal then
follows the standard procedure.

4.3. DBSCAN algorithm improvements

Algorithm 1 Disjoint-set DBSCAN algorithm

procedure DSDBSCAN(X, minPts, €)

1:

2 for each point x € X do

3 N < GetNeighbors(z,¢)

4 if |[N| > minPts then

5: mark x as core point

6: for eachy € N do

7: if y is marked as a core point then
8 Union(z,y)

9 else if y is not a member of any cluster then
0 mark y as a member of a cluster
1

Union(z,y)

The original DBSCAN algorithm in Ester et al. (1996) was
hard to parallelize due to its breadth-first manner of en-
countering new points. Improvements to the algorithm in
Patwary et al. (2012) broke with its breadth-first nature. The
authors used the UNION-FIND (Tarjan, 1979) approach to
maintain a disjoint-set data structure. The approach relies on
two main operations: UNION and FIND. Find(x) determines
the representative of a set that a point x belongs to, while
Union(x, y) combines the sets that x and y belong to.

For completeness, Algorithm 1 shows the disjoint-set
DBSCAN (DSDBSCAN) algorithm as proposed in Patwary et al.
(2012) (Algorithm 2). Each point only computes its own
neighborhood (Line 3). If it is a core point, its neighbors are
assigned to the same cluster (Lines 8 and 11).

We will now describe our initial implementation, and
then briefly describe two newly developed algorithms (for
more information, see Prokopenko et al. (2023a)).

4.3.1. Initial DBSCAN implementation. Our original approach
was to solve the special case of DBSCAN of minPts = 2. In
cosmology literature, it is usually called Friends-of-Friends
(FOF). This case is simpler, as each point either belongs to a
cluster as a core point, or is noise. It is equivalent to finding
connected components in the undirected adjacency graph,
with each pair of vertices within ¢ of each other have a
corresponding edge in the graph.



174

The International Journal of High Performance Computing Applications 39(1)

Prior to introduction of the callbacks (see Section 4.1.1),
ArborX only produced an explicit adjacency graph. Af-
terwards, we used the ECL-CC (Jaiganesh and Burtscher,
2018) algorithm to compute the connected components.

The major drawback of this approach was storing the full
adjacency graph in memory. It imposed a severe restriction
on the size of the problems one could run. The memory
usage depended not only on the size of the problem #, but
also on the parameter e.

4.3.2. Reformulated DBSCAN algorithm. Both the original
Ester et al. (1996) and Patwary et al. (2012) DBSCAN
formulations do not expose enough parallelism for GPU
implementations with thousands of threads. To address
that, we reformulated the algorithm to consist of two
phases. In the first phase (preprocessing), the algorithm
determines the core points. In the second phase (main), it
merges the pairs of close neighbors as they are being
discovered.

Algorithm 2 Parallel disjoint-set DBSCAN algorithm

1: procedure PDSDBSCAN(X, minPts, )

2 if minPts > 2 then

3: for each point € X in parallel do

4 determine whether z is a core point

5 for each pair of points =,y such that dist(z,y) < ¢ in

parallel do

6: if x is a core point then

7: if y is a core point then

8: Union(z,y)

9: else if y is not yet a member of any cluster then
10: critical section:

11: mark y as a member of a cluster
12: Union(z,y)

The pseudocode for the reformulated DBSCAN (PDSDBSCAN)
algorithm is shown in Algorithm 2. The preprocessing
phase is executed on Lines 3-4. The UNION-FIND algorithm is
performed on Lines 8 and 11.

The main advantage of the reformulated algorithm is that
it executes the neighbor searches completely in parallel for
all data points, allowing it to take advantage of the un-
derlying parallel index. In addition, it allows processing
each found neighbor as soon as it is found and immediately
discarding afterwards.

4.3.3. FDBSCAN. rpBscaN (“fused” DBSCAN) constructs a
search index (BVH) over all the points of the datasets.
Several ArborX improvements described in Section 4.2 play
a crucial role in achieving a good performance. We use
callbacks to fuse tree traversal with the counting and UNION-
FIND kernels, avoiding neighbor storage. This makes the
algorithm use O(n) memory. We use early termination in the
counting kernel, stopping a thread once minPts threshold
has been achieved. In the main kernel constructing the
clusters, we then use the pair traversal technique.

Figure 9. Regular 2D grid with grid size s/\/f superimposed over
the dataset. The dense cells for minPts = 5 are shown in red.

4.3.4. FDBSCAN-DenseBox. FDBSCAN-DENSEBOX is a modifi-
cation to FDBSCAN accommodating regions with high density
(with respect to ¢€). These regions are characterized by the
number of neighbors within ¢-neighborhood far exceeding
the minPts value. In this scenario, many of the distance
computations may be avoided.

To achieve this goal, we superimpose a regular grid with
the grid cell length of ¢/v/d (with d being the data di-
mension) on top of the data. The choice of the length pa-
rameter guarantees that each cell’s diameter does not exceed
¢. Thus, any grid cell with at least minPts points in it will
only contain core points, and the distance calculations
among them can be eliminated.. We call these cells dense.
Figure 9 demonstrates an example of such grid over a set of
points, with dense cells for minPts = 5 marked in red.

We modify the BVH construction algorithm of FpBscan
to accommodate dense boxes. Instead of constructing the
hierarchy only on the data points, we construct it out of a
mix of dense cells and points outside of the dense cells. This
poses no challenge to the BVH construction, as it only
requires bounding volumes for a set of objects. During the
traversal, if a found object is a dense cell, we perform a
search over all of its contained points.

5. Conclusions and future work

We presented the progress made in ArborX in the past few
years to support the HACC cosmology application. We
identified an analysis problem of high importance to the
overall cosmology simulation, and developed and im-
plemented multiple algorithms to improve the performance
of the dbscan algorithm. We presented a timeline of the core
and algorithmic changes in ArborX using a benchmark
problem. We have also shown that the ArborX speedup,
which is of an order of magnitude when compared to a
highly optimized CPU OpenMP algorithm in HACC,



Prokopenko et al.

175

resulted in a factor of 2 improvement in the full time-stepper
performance.

Our ongoing research has several thrusts. We are de-
veloping an efficient implementation of an advanced
density-based algorithm upBscan' (Campello et al., 2015),
which is an improvement over the DBSCAN algorithm. We are
working on improving the SYCL based implementation to
target the upcoming Aurora supercomputer. In addition,
there are ongoing efforts to include the auto-tunable in-
terface to select best occupancy parameters during the
simulation runtime.

Acknowledgement

We would further like to acknowledge the work of the ExaSky
team and the development and testing efforts therein.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of En-
ergy Office of Science and the National Nuclear Security Ad-
ministration. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Lab-
oratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-000R22725.
Argonne National Laboratory’s work was supported under the U.S.
Department of Energy contract DE-AC02-06CH11357. Addi-
tionally, this study utilized resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User Fa-
cility supported under Contract DE-AC02-06CH11357.

ORCID iDs

Andrey Prokopenko @ https://orcid.org/0000-0003-3616-5504
Daniel Arndt @ https://orcid.org/0000-0001-8773-4901
Damien Lebrun-Grandié @ https:/orcid.org/0000-0003-1952-7219
https://orcid.org/0009-0005-8598-4292
https://orcid.org/0000-0003-1406-0744
https://orcid.org/0000-0002-8469-4534

Nicholas Frontiere
J.D. Emberson
Michael Buehlmann

Notes

1. This manuscript has been authored by UT-Battelle, LLC, under
contract DE-ACO05-000R22725 with the U.S. Department of
Energy. The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges
that the United States Government retains a nonexclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the

published form of this manuscript, or allow others to do so, for
United States Government purposes.

2. Following the formula & = (V' /n)"/, where with b = 0.168 is
the linking length, ¥ is the simulation volume (256°), and n
being the number particles (1024%).

References

ALCF (2023) Aurora. https://www.alcf.anl.gov/aurora/.

Apetrei C (2014) Fast and simple agglomerative LBVH con-
struction. In: Borgo R and Tang W (eds) Computer Graphics
and Visual Computing (CGVC). The Eurographics Associ-
ation. DOI: 10.2312/cgvc.20141206.

Campello RIGB, Moulavi D, Zimek A, et al. (2015) Hierarchical
density estimates for data clustering, visualization, and outlier
detection. ACM Transactions on Knowledge Discovery from
Data 10(1): 5:1-5:51. DOI:10.1145/2733381.

Ester M, Kriegel HP, Sander J, et al. (1996) A density-based al-
gorithm for discovering clusters in large spatial databases
with noise Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining, KDD 96.
AAALI Press, 226-231.

Frontiere N, Emberson J, Buehlmann M, et al. (2023) Simulating
hydrodynamics in cosmology with CRK-HACC. The As-
trophysical Journal Supplement Series 264(2): 34.

Habib S, Pope A, Finkel H, et al. (2016) HACC: simulating sky
surveys on state-of-the-art supercomputing architectures.
New Astronomy 42: 49-65.

Jaiganesh J and Burtscher M (2018) A high-performance con-
nected components implementation for GPUs Proceedings of
the 27th International Symposium on High-Performance
Parallel and Distributed Computing. New York, NY, USA:
ACM, 92-104. HPDC ’18. DOI: 10.1145/3208040.3208041.

Karras T (2012) Maximizing parallelism in the construction
of BVHs, octrees, and K-d trees Proceedings of the Fourth
ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics, EGGH-HPG’12. Goslar Germany,
Germany: Eurographics Association, 33-37. DOI: 10.2312/
EGGH/HPG12/033-037.

Lauterbach C, Garland M, Sengupta S, et al. (2009) Fast BVH con-
struction on GPUs. Computer Graphics Forum 28(2): 375-384.

Lebrun-Grandi¢ D, Prokopenko A, Turcksin B, et al. (2020)
ArborX: a performance portable geometric search library.
ACM Transactions on Mathematical Software 47(1): 1-2.
DOI:10.1145/3412558.

Messina P (2017) The exascale computing project. Computing in
Science & Engineering 19(3): 63—-67.

NERSC (2022) Perlmutter. https://www.nersc.gov/systems/
perlmutter/.

OLCF (2022) Frontier. https://www.nersc.gov/systems/
perlmutter/.

Patwary MMA, Palsetia D, Agrawal A, et al. (2012) A new
scalable parallel DBSCAN algorithm using the disjoint-set
data structure. In: SC ’12: Proceedings of the International


https://orcid.org/0000-0003-3616-5504
https://orcid.org/0000-0003-3616-5504
https://orcid.org/0000-0001-8773-4901
https://orcid.org/0000-0001-8773-4901
https://orcid.org/0000-0003-1952-7219
https://orcid.org/0000-0003-1952-7219
https://orcid.org/0009-0005-8598-4292
https://orcid.org/0009-0005-8598-4292
https://orcid.org/0000-0003-1406-0744
https://orcid.org/0000-0003-1406-0744
https://orcid.org/0000-0002-8469-4534
https://orcid.org/0000-0002-8469-4534
https://www.alcf.anl.gov/aurora/
https://doi.org/10.2312/cgvc.20141206
https://doi.org/10.1145/2733381
https://doi.org/10.1145/3208040.3208041
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.1145/3412558
https://www.nersc.gov/systems/perlmutter/
https://www.nersc.gov/systems/perlmutter/
https://www.nersc.gov/systems/perlmutter/
https://www.nersc.gov/systems/perlmutter/

176

The International Journal of High Performance Computing Applications 39(1)

Conference on High Performance Computing, Networking,
Storage and Analysis, 1-11. DOI: 10.1109/SC.2012.9.
Prokopenko A and Lebrun-Grandi¢ D (2024) Revising Apetrei’s
bounding volume hierarchy construction algorithm to allow
stackless traversal. Oak Ridge, TN (United States): Oak
Ridge National Laboratory (ORNL). Technical Report

ORNL/TM-2024/3259. DOI: 10.2172/2301619.

Prokopenko A, Lebrun-Grandié D and Arndt D (2023a) Fast tree-
based algorithms for DBSCAN for low-dimensional data on
GPUs. In: Proceedings of the 52nd International Conference
on Parallel Processing, ICPP ’23. New York, NY, USA:
Association for Computing Machinery, 503-512. DOI: 10.
1145/3605573.3605594.

Prokopenko A, Sao P and Lebrun-Grandie D (2023b) A single-tree
algorithm to compute the Euclidean minimum spanning tree
on GPUs Proceedings of the 51st International Conference
on Parallel Processing, ICPP ’22. New York, NY, USA:
Association for Computing Machinery, 1-10. DOI: 10.1145/
3545008.3546185.

Quaranta G, Masarati P, Mantegazza P, et al. (2005) A conservative
mesh-free approach for fluid-structure interface problems. In:
International Conference for Coupled Problems in Science
and Engineering, Greece.

Slattery S, Wilson P and Pawlowski R (2013) The data transfer kit:
a geometric rendezvous-based tool for multiphysics data
transfer. In: International Conference on Mathematics &
Computational Methods Applied to Nuclear Science & En-
gineering (M&C 2013), 5-9.

Tarjan RE (1979) A class of algorithms which require nonlinear time
to maintain disjoint sets. Journal of Computer and System
Sciences 18(2): 110-127. DOI: 10.1016/0022-0000(79)90042-4.

Torres R, Martin PJ and Gavilanes A (2009) Ray casting using a
roped BVH with CUDA. In: Proceedings of the 25th Spring
Conference on Computer Graphics, SCCG '09. New York,
NY, USA: Association for Computing Machinery, 95-102.
DOI: 10.1145/1980462.1980483.

Trott CR, Lebrun-Grandié D, Arndt D, et al. (2022) Kokkos 3:
programming model extensions for the exascale era. IEEE
Transactions on Parallel and Distributed Systems 33(4):
805-817. DOI:10.1109/TPDS.2021.3097283.

Author biographies

Andrey Prokopenko is a computational scientist at Oak Ridge
National Laboratory. His research interests include multigrid
algorithms, geometric search, and extreme scale computing.

Daniel Arndt received his PhD degree in mathematics from
University of Gottingen. He is currently a computational
scientist with Oak Ridge National Laboratory. He worked
on multiple ECP projects, including Kokkos with a primary
focus on the SYCL backend, and is one of the main authors
of the deal.Il finite element library.

Damien Lebrun-Grandie is a Senior Computational Sci-
entist with Oak Ridge National Laboratory. His research
focus on the development of algorithms and enabling
technologies for the solution of large-scale complex engi-
neering and scientific problems. He is a high-performance
computing expert, co-leader of the Kokkos performance
portability project, and member of the ISO C++ Standards
Committee.

Bruno Turcksin is a Computational Scientist at Oak Ridge
National Laboratory. His work spans multiple disciplines
including nuclear engineering, finite element, high perfor-
mance computing, and additive manufacturing. He is one of
the main developers of deal.ll (finite element library),
Kokkos (programming model library), and adamantine
(additive manufacturing simulator).

Nicholas Frontiere is a computational scientist at Argonne
National Laboratory, specializing in numerical cosmology
and computational fluid dynamics. His research focuses on
simulating the large-scale structure formation of the uni-
verse and developing high-performance computing appli-
cations for modern exascale machines.

J. D. Emberson is a computational cosmologist in the
Computational Science Division at Argonne National
Laboratory. He has a broad interest in the development and
application of numerical techniques for large-scale cos-
mological structure formation simulations. This includes
both N-body as well as hydrodynamic methods in order to
gain insight into various astrophysical phenomena includ-
ing dark energy, neutrinos, and primordial non-Gaussianity.
Emberson is one of the main developers of HACC with an
emphasis on integrating robust hydrodynamical modeling
for use on next-generation exascale platforms.

Michael Buehlmann is a computational scientist at Argonne
National Laboratory, specializing in numerical cosmology.
His work involves the development and execution of large-
scale cosmological simulations, with a focus on subgrid
modeling and post-processing pipelines for exascale
systems.


https://doi.org/10.1109/SC.2012.9
https://doi.org/10.2172/2301619
https://doi.org/10.1145/3605573.3605594
https://doi.org/10.1145/3605573.3605594
https://doi.org/10.1145/3545008.3546185
https://doi.org/10.1145/3545008.3546185
https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1145/1980462.1980483
https://doi.org/10.1109/TPDS.2021.3097283

	Advances in ArborX to support exascale applications
	1. Introduction
	2. ArborX impact on production simulations with HACC
	3. Background
	3.1. DBSCAN algorithm
	3.2. ArborX library
	3.1.1. Core functionality
	3.2.2. Clustering functionality
	3.2.3. Ray tracing functionality
	3.2.4. Interpolation functionality


	4. ArborX improvements
	4.1. Interface improvements
	4.1.1. Callbacks
	4.1.2. Early termination

	4.2. Core algorithms improvements
	4.2.1. Stackless traversal
	4.2.2. 64
	4.2.3. Pair traversal

	4.3. DBSCAN algorithm improvements
	4.3.1. Initial DBSCAN implementation
	4.3.2. Reformulated DBSCAN algorithm
	4.3.3. FDBSCAN
	4.3.4. FDBSCAN


	5. Conclusions and future work
	Acknowledgement
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Notes
	References
	Author biographies


