
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Overcoming Today’s Limitations of
Standard C++ with Kokkos

Damien Lebrun-Grandié

22 Open slide master to edit

Content

• Brief overview of Kokkos

• Memory and execution spaces

• Hierarchical parallelism

33 Open slide master to edit

44 Open slide master to edit

The Kokkos ecosystem

Linear Algebra Kernels Graph Kernels

Kokkos Kernels

Kokkos Core
Parallel Execution Parallel Data Structures

Science and Engineering Applications

Kokkos EcoSystem

Trilinos

Kokkos
Tools

Debugging

Profiling

Kokkos
Support

Tutorials

Bootcamps

App support

Documentation

Tuning

Global Arrays

Kokkos Remote Spaces
Redundant Exe Checkpoints

Kokkos Resilience

Fortran

Kokkos Interop
Python

55 Open slide master to edit

The Kokkos team

66 Open slide master to edit

Kokkos Core – Contributions and Usage

Contributions Usage

https://kokkosteam.slack.com
>1000 Registered Users
>130 Institutions

SNL

Other
SNL

DOE (not SNL)

Other

2015-2017 2021-2023
ECP-Funding

SNL

DOE
(not
SNL)

Universitie

Other

https://kokkosteam.slack.com/

77 Open slide master to edit

What do we mean by “Standard C++”

• Code you can write today without using language extensions
or additional libraries, which is portable to other compiler and
systems and can be ”automatically” accelerated with GPUs.

• Which excludes
– CUDA/HIP require use of __host__ and __device__ attributes on functions

and triple chevron syntax <<<...>>> for GPU kernel launches
– OpenACC/OpenMP use #pragmadirectives to control GPU

accelerations
– Thrust or oneDPL let you express parallelism portably but only support a

limited number of CPU and GPU backends

Kokkos execution and
memory spaces

99 Open slide master to edit

Standard C++ abstract machine

• Threads of execution evaluating
functions that operate on objects that
are in a flat storage space

• But…

• No notion of hierarchy (caches, etc.)

• No concept of host or device memory,
nor accessibility

Adelstein Lelbach, CppCon 2018

1010 Open slide master to edit

Revisions of the C++ standard

C++11

C++14

C++17
C++20

Memory model
Concurrent execution model
Concurrency support library

Parallel algorithms

Standard way to
take advantage of
multicore processors

Enable accelerating
with GPUs

C++98/03
Dynamic memory management
Containers library
Algorithms library

C++23

Atomic extensions

mdspan

1111 Open slide master to edit

GPU-enabled implementations today

NVIDIA HPC SDK
• Offloading of parallel algorithms to NVIDIA

GPUs

• Enabled with the –stdpar[=gpu] option to
NVC++

• Relies on CUDA Unified Memory for all data
movement between CPU and GPU memory

• Automatically migrating data towards the
processor using it

Intel OneAPI DPC++

• Support for Intel, NVIDIA, and AMD GPU
devices using oneDPL device execution
policies (non-standard)
std::par and std::par_unseq run on the host
via TBB or OpenMP backend

• Unified Shared Memory
C-style memory management via
sycl::malloc_{device,host,shared}

• Or SYCL buffer objects to pass data to device
(oneAPI runtime controls data movement)

std::fill(
oneapi::dpl::execution::make_device_policy(queue),
begin(v), end(v), 42);

std::for_each(
std::execution::par_unseq,
v.begin(), v.end(),
[](int& x) { x = x * x; });

1212 Open slide master to edit

Target machine for Kokkos programming model

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

1313 Open slide master to edit

Kokkos execution spaces

• Define where kernels get executed and
what backend to use

(e.g. Serial, Threads, OpenMP, Cuda, HIP,
…)

• Execution space instances
encapsulating CUDA/HIP stream or SYCL
queue

Always available:
DefaultExecutionSpace
DefaultHostExecutionSpace

1414 Open slide master to edit

Kokkos memory spaces

• Define “where” and “how” memory
allocation and access take place

(e.g. HostSpace, SYCLDeviceUSMSpace,
SYCLSharedUSMSpace,
SYCLHostUSMSpace)

Always available:
HostSpace
SharedSpace
SharedHostPinnedSpace
ExecutionSpace::memory_space
ExecutionSpace::scratch_memory_space

1515 Open slide master to edit

Accessibility of allocations from target devices

• Kokkos cannot introspect user-provided
functors

• But it provides a facility to check
accessibility and catch most bugs at
compile-time rather than runtime

Kokkos::parallel_for(
"Fill", N, KOKKOS_LAMBDA(int i) { v(i) = value; })

memory access violation?

static_assert(is_accessible_from<
typename View::memory_space,
DefaultExecutionSpace>::value);

1616 Open slide master to edit

Kokkos user remains in control of data placement

Explicit data movement

• Explicit data transfer between host and
device

• no-op when view is already accessible from
the CPU

Managed memory

• Managed memory accessible from all CPUs
and GPUs in the system as a single, coherent
memory image with a common address
space

auto v_host = create_mirror_view_and_copy(HostSpace(), v);

View<float*, SharedSpace> w("w", N);

Hierarchical parallelism

1818 Open slide master to edit

Example: inner product <y, A*x>

How to parallelize using C++17 parallel
algorithms?

double result = 0.;
for (int i = 0; i < N, ++i) {
double Ax_i = 0.;
for (int j = 0; j < M, ++j) {
Ax_i += A(i, j) * x(j);

}
result += y(i) * Ax_i;

}

1919 Open slide master to edit

Accelerate <y,A*x> with standard parallelism

•

Problem: What if we don’t have enough
rows to saturate the GPU?

double result = std::reduce(
std::execution::par_unseq,
counting_iterator(0), counting_iterator(N),
0.,
[=](int i) {

double Ax_i = 0.;
for (int j = 0; j < M; ++j) {
Ax_i += A(i, j) * x(j);

}
return y(i) * Ax_i;

});

2020 Open slide master to edit

Frontier compute node

[1x] 64-core AMD “Optimized 3rd Gen EPYC” CPU
[4x] MI250x each with 2 GCDs
Each GCD contains 110 CUs
64 GB of HBM accessible at 1.6 TB/s

4 CEs which dispatch wavefronts to CUs
All wavefronts from a single workgroup are
assigned to the same CU

Work items in a wavefront are scheduled in units
of 64 called wavefronts
Up to 64 KB of LDS can be allocated

Each CU has 4 MCUs and 4 16-wide SIMD units
Each wavefront is assigned to a single 16-wide
SIMD unit

Each CU maintains an instruction buffer for 10
wavefronts

2’252’800 threads

2121 Open slide master to edit

Hierarchical parallelism in Kokkos

• Exploit multiple level of shared-memory parallelism
These levels include thread teams, threads within a team, and vector
lanes.

• Able to nest these levels of parallelism, and execute parallel_for(),
parallel_reduce(), or parallel_scan() at each level

• Syntax differs only by the execution policy which is the 1st argument to the
parallel_*

• Also exposing a “scratch pad” memory which provides thread private
and team private allocations

2222 Open slide master to edit

Accelerate <x,A*y> with Kokkos

double result;
parallel_reduce(

"yAx", TeamPolicy(N, AUTO),
KOKKOS_LAMBDA(auto const &team_handle,

double &partial_result) {
int const i = team_handle.league_rank();
double Ax_i;
parallel_reduce(

TeamThreadRange(team_handle, M),
[&](int const i, double &update) {
update += A(i, j) * x(j);

}, Ax_i);
if (team_handle.team_rank() == 0)

partial_result += y(i) * Ax_i;
}, result);

2323 Open slide master to edit

Sparse Matrix-Vector product (SpMV)

Kokkos Kernels native implementation with 3-
level hierarchical parallelism competes with
vendor optimized libraries

The Kokkos EcoSystem: Comprehensive Performance
Portability for High Performance Computing
DOI: 10.1109/MCSE.2021.3098509

parallel_for(
"SpMV",
TeamPolicy((nrows + rows_per_team - 1) / rows_per_team, team_size, 8),
KOKKOS_LAMBDA(auto const& team) {

int const first_row = team.league_rank() * rows_per_team;
int const last_row = first_row + rows_per_team < nrows

? first_row + rows_per_team : nrows;
parallel_for(

TeamThreadRange(team, first_row, last_row), [&](int const row) {
int const row_start = A.row_ptr(row);
int const row_length = A.row_ptr(row + 1) - row_start;
double y_row;
parallel_reduce(

ThreadVectorRange(team, row_length),
[=](int const i, double& sum) {

sum +=
A.values(i + row_start) * x(A.col_idx(i + row_start));

},
y_row);

y(row) = y_row;
});

});

3rd level

2nd level

1st level

2424 Open slide master to edit

Wrap up

• We don’t want memory management strategy to be dictated

• We want to be able to check accessibility of data

• We want nested algorithms

2525 Open slide master to edit

Thank you!

Damien L-G <lebrungrandt@ornl.gov>

