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• Memory and execution spaces

• Hierarchical parallelism
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The Kokkos ecosystem
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The Kokkos team
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Kokkos Core – Contributions and Usage

Contributions Usage

https://kokkosteam.slack.com 
>1000 Registered Users
>130 Institutions

SNL

Other
SNL

DOE (not SNL)

Other

2015-2017 2021-2023
ECP-Funding

SNL

DOE 
(not 
SNL)

Universitie

Other

https://kokkosteam.slack.com/
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What do we mean by “Standard C++”

• Code you can write today without using language extensions 
or additional libraries, which is portable to other compiler and 
systems and can be ”automatically” accelerated with GPUs.

• Which excludes
– CUDA/HIP require use of __host__ and __device__ attributes on functions 

and triple chevron syntax <<<...>>> for GPU kernel launches
– OpenACC/OpenMP use #pragmadirectives to control GPU 

accelerations
– Thrust or oneDPL let you express parallelism portably but only support a 

limited number of CPU and GPU backends



Kokkos execution and 
memory spaces
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Standard C++ abstract machine

• Threads of execution evaluating 
functions that operate on objects that 
are in a flat storage space

• But…

• No notion of hierarchy (caches, etc.)

• No concept of host or device memory, 
nor accessibility

Adelstein Lelbach, CppCon 2018
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Revisions of the C++ standard

C++11

C++14

C++17
C++20

Memory model
Concurrent execution model
Concurrency support library

Parallel algorithms

Standard way to 
take advantage of 
multicore processors

Enable accelerating  
with GPUs

C++98/03
Dynamic memory management
Containers library
Algorithms library

C++23

Atomic extensions

mdspan
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GPU-enabled implementations today

NVIDIA HPC SDK
• Offloading of parallel algorithms to NVIDIA 

GPUs

• Enabled with the –stdpar[=gpu] option to 
NVC++

• Relies on CUDA Unified Memory for all data 
movement between CPU and GPU memory

• Automatically migrating data towards the 
processor using it

Intel OneAPI DPC++

• Support for Intel, NVIDIA, and AMD GPU 
devices using oneDPL device execution 
policies (non-standard)
std::par and std::par_unseq run on the host 
via TBB or OpenMP backend

• Unified Shared Memory
C-style memory management via
sycl::malloc_{device,host,shared}

• Or SYCL buffer objects to pass data to device 
(oneAPI runtime controls data movement)

std::fill(
oneapi::dpl::execution::make_device_policy(queue),
begin(v), end(v), 42);

std::for_each(
std::execution::par_unseq,
v.begin(), v.end(),
[](int& x) { x = x * x; });
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Target machine for Kokkos programming model

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator
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Kokkos execution spaces

• Define where kernels get executed and 
what backend to use

(e.g. Serial, Threads, OpenMP, Cuda, HIP, 
…)

• Execution space instances 
encapsulating CUDA/HIP stream or SYCL 
queue

Always available:
DefaultExecutionSpace
DefaultHostExecutionSpace
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Kokkos memory spaces

• Define “where” and “how” memory 
allocation and access take place

(e.g. HostSpace, SYCLDeviceUSMSpace, 
SYCLSharedUSMSpace, 
SYCLHostUSMSpace)

Always available:
HostSpace
SharedSpace
SharedHostPinnedSpace
ExecutionSpace::memory_space
ExecutionSpace::scratch_memory_space
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Accessibility of allocations from target devices

• Kokkos cannot introspect user-provided 
functors

• But it provides a facility to check 
accessibility and catch most bugs at 
compile-time rather than runtime

Kokkos::parallel_for(
"Fill", N, KOKKOS_LAMBDA(int i) { v(i) = value; })

memory access violation?

static_assert(is_accessible_from<
typename View::memory_space,
DefaultExecutionSpace>::value);
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Kokkos user remains in control of data placement

Explicit data movement

• Explicit data transfer between host and 
device

• no-op when view is already accessible from 
the CPU

Managed memory

• Managed memory accessible from all CPUs 
and GPUs in the system as a single, coherent 
memory image with a common address 
space

auto v_host = create_mirror_view_and_copy(HostSpace(), v);

View<float*, SharedSpace> w("w", N);



Hierarchical parallelism
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Example: inner product <y, A*x>

How to parallelize using C++17 parallel 
algorithms?

double result = 0.;
for (int i = 0; i < N, ++i) {
double Ax_i = 0.;
for (int j = 0; j < M, ++j) {
Ax_i += A(i, j) * x(j);

}
result += y(i) * Ax_i;

}
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Accelerate <y,A*x> with standard parallelism

•

Problem: What if we don’t have enough 
rows to saturate the GPU?

double result = std::reduce(
std::execution::par_unseq,
counting_iterator(0), counting_iterator(N),
0.,
[=](int i) {

double Ax_i = 0.;
for (int j = 0; j < M; ++j) {
Ax_i += A(i, j) * x(j);

}
return y(i) * Ax_i;

});



2020 Open slide master to edit

Frontier compute node

[1x] 64-core AMD “Optimized 3rd Gen EPYC” CPU
[4x] MI250x each with 2 GCDs
Each GCD contains 110 CUs
64 GB of HBM accessible at 1.6 TB/s

4 CEs which dispatch wavefronts to CUs
All wavefronts from a single workgroup are 
assigned to the same CU

Work items in a wavefront are scheduled in units 
of 64 called wavefronts
Up to 64 KB of LDS can be allocated

Each CU has 4 MCUs and 4 16-wide SIMD units
Each wavefront is assigned to a single 16-wide 
SIMD unit

Each CU maintains an instruction buffer for 10
wavefronts

2’252’800 threads
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Hierarchical parallelism in Kokkos

• Exploit multiple level of shared-memory parallelism
These levels include thread teams, threads within a team, and vector 
lanes.

• Able to nest these levels of parallelism, and execute parallel_for(), 
parallel_reduce(), or parallel_scan() at each level

• Syntax differs only by the execution policy which is the 1st argument to the 
parallel_*

• Also exposing a “scratch pad” memory which provides thread private 
and team private allocations
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Accelerate <x,A*y> with Kokkos

double result;
parallel_reduce(

"yAx", TeamPolicy(N, AUTO),
KOKKOS_LAMBDA(auto const &team_handle,

double &partial_result) {
int const i = team_handle.league_rank();
double Ax_i;
parallel_reduce(

TeamThreadRange(team_handle, M),
[&](int const i, double &update) {
update += A(i, j) * x(j);

}, Ax_i);
if (team_handle.team_rank() == 0)

partial_result += y(i) * Ax_i;
}, result);
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Sparse Matrix-Vector product (SpMV)

Kokkos Kernels native implementation with 3-
level hierarchical parallelism competes with 
vendor optimized libraries

The Kokkos EcoSystem: Comprehensive Performance 
Portability for High Performance Computing
DOI: 10.1109/MCSE.2021.3098509

parallel_for(
"SpMV",
TeamPolicy((nrows + rows_per_team - 1) / rows_per_team, team_size, 8),
KOKKOS_LAMBDA(auto const& team) {

int const first_row = team.league_rank() * rows_per_team;
int const last_row = first_row + rows_per_team < nrows

? first_row + rows_per_team : nrows;
parallel_for(

TeamThreadRange(team, first_row, last_row), [&](int const row) {
int const row_start = A.row_ptr(row);
int const row_length = A.row_ptr(row + 1) - row_start;
double y_row;
parallel_reduce(

ThreadVectorRange(team, row_length),
[=](int const i, double& sum) {

sum +=
A.values(i + row_start) * x(A.col_idx(i + row_start));

},
y_row);

y(row) = y_row;
});

});

3rd level

2nd level

1st level
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Wrap up

• We don’t want memory management strategy to be dictated

• We want to be able to check accessibility of data

• We want nested algorithms
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Thank you!

Damien L-G <lebrungrandt@ornl.gov>


