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What is Kokkos?

• A C++ Programming Model for Performance Portability
– Implemented as a template library on top of CUDA, OpenMP, …
– Aims to be descriptive not prescriptive
– Aligns with developments in the C++ standard

• Expanding solution for common needs of modern science/engineering 
codes 
– Math libraries based on Kokkos
– Tools which enable insight into Kokkos

• It is Open Source
– Maintained and developed at 

https://github.com/kokkos

• It has many users at wide range of institutions

https://github.com/kokkos
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SNL

DOE (not SNL)

Universities

Other

https://kokkosteam.slack.com 
• >1200 registered users
• >150 institutions

• Including 34 European

Kokkos Slack

Applications and Libraries
• Estimated 150-300 HPC projects using Kokkos
• On the order of three-dozen apps run science and 

engineering production runs with Kokkos
• Many apps use multiple Kokkos based libraries

• Similar distribution as the Slack User

Kokkos Developers

Kokkos Community

50% of C++ based DOE ECP codes use Kokkos

https://kokkosteam.slack.com/
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Kokkos Core - Contributions

SNL

Other
SNL

DOE (not SNL)

Other

2015-2017 2021-2023

• Most of Kokkos-Tools and Kokkos-Kernels development still at Sandia
• ISO C++ Contribution well distributed over labs

ECP Funding
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Frontier/Aurora support status

AMD
Frontier/El Capitan: HIP
Production-ready since Kokkos 4.0

– Fine grained tasking is missing

PR and nightly testing on AMD GPUs

Generally, performance is good

AMD GPUs struggle a bit compared to NVIDIA 
GPUs with cache intensive workloads

Performance Portability of Kokkos code is 
excellent however

See for example native 
Kokkos SPMV
implementation beating 
vendor libraries for a 
range of use cases

Intel
Aurora: DPC++/SYCL
Still experimental

– DPC++/SYCL is still evolving (not fully 
stabilized)

– Tracking latest toolchain developments

– Regressions in functionality still common

PR testing on NVIDIA GPUs, nightly testing on 
actual Intel PVC hardware

Most Kokkos-based ECP applications pass 
testing with the SYCL backend

Performance similar to AMD
– Some issues around bandwidth – only 

getting about 65% of peak
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Performance benchmarks
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Sustainment: a self reinforcing cycle?

Good 
product

UsersSustained 
funding

Sustained 
funding leads to 
better product

Sustained funding == trust
More usage leads to more funding

More Users
More Feedback

There is strength in numbers: collaboration on core product 
good for everyone!
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Pillars for Long Term Sustainment

Open Source
• Enable wider set of contributor

• Risk mitigation for partner institutions – no one can just take the project away; 
worst case scenario is institutional fork with internal continued development

• Permissive license critical for industry participation

Core Funding
• Need a group of institutions to sustain core development team

• NNSA – Sandia National Laboratories (+ Los Alamos National Laboratory?)
• DOE – ASCR Facilities – Oak Ridge Leadership Computing Facility, NERSC, … ?

• CEA starting now

Open Governance
• Encourage participation of institutions by enabling say in direction

• Enable path for new core funding teams to enter
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High Performance Software Foundation

Primary Goal: Enable true partnerships on Kokkos 
via open governance.

Linux FoundationHPSF

Kokkos Technical Project Spack 
Technical 

ProjectTechnical Board

Kokkos Core Kokkos Kernels

Remote Spaces PyKokkos

Primary Projects

Incubation Projects

Foundation Board

• Cloud Native Computing 
Foundation

• OpenSSF
• LF Networking
• RISC-V

https://hpsf.io

Trilinos 
Technical 

Project

https://hpsf.io/
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Kokkos and ISO C++

Long term sustainment via integration of Kokkos features 
into ISO C++ standard

Getting something into ISO C++

• Requires a lot of effort 

• mdspan was 9 years, but we didn’t know what we were doing

• linalg took 5 years to get into draft

• Requires prototype and usage experience

• Need to be able to show successful use in field by sizeable community

Kokkos as the HPCs proving ground

• Large enough community

• More agile development of new features possible

• Kokkos team has gained trust of ISO C++ community as well as standard library implementers

In the standard
• ”this” capture C++17
• atomic_ref C++20
• mdspan C++23
In flight for 26
• linalg – BLAS with extensions – 

in draft
• Batched linalg
• mdarray
• submdspan – in draft
• More accessors and layouts
• simd
• senders/receivers

We need long term engagement with ISO C++ as integral 
part of Kokkos effort.



1414 Open slide master to edit

Sustainment through standardization
Multi-dimensional arrays

template<
 class T,
 class Extents,
 class LayoutPolicy = std::layout_right,
 class AccessorPolicy = std::default_accessor<T>

> class mdspan; (since C++23)

template <
    class DataType
    [, class LayoutType]
    [, class MemorySpace]
    [, class MemoryTraits]>
class Kokkos::View;

Kokkos::View<double**> A("A", M, N);
Kokkos::View<double[4][4], Kokkos::LayoutLeft> B("B");

std::mdspan A(ptr, M, N);
std::mdspan<double, std::extents<int, 4, 4>, std::layout_left> B(ptr);



1515 Open slide master to edit

Sustainment through standardization
Linear algebra

template<
    [class ExecutionPolicy,]
 InMatrix InMat,
    InVector InVec,
    OutVector OutVec
>  void matrix_vector_product( [ExecutionPolicy&& exec,]
                                                        InMat A,
                                                       InVec x,
                                                        OutVec y );  (since C++26)

template<
    [class ExecutionHandle,]
    class InMat,
    class InVec,
    class OutVec>
void KokkosKernels::gemv (
     [const ExecutionHandle& exec,]
     const char trans[],
     typename InMat::const_value_type& alpha,
     InMat A,
     OutMat x,
     typename OutVec::const_value_type& beta,
     OutVec y);

dgemv('N', M, N, 1., A, 1, x, 1, 0., y, 1);  // 11 parameters

KokkosKernels::gemv('N', 1., A, x, 0., y);

std::matrix_vector_product(A, x, y);

BLAS

KokkosKernels

Standard C++
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Our ideas for future directions of Kokkos

Edge computing / Embedded Support
• Many of the same concerns as HPC – resource constraint, performance critical

• Many different devices including FPGAs

Programming Language Safety 
• More concern about cyber security – how do we write safer code?

• Kokkos data abstractions (View/mdspan/mdarray) enable safer encapsulation – 
could make it almost impossible to have out-of-bounds memory access

• Combined with static analysis could be significant step to enable C++ codes 
which are memory safe by design

Better integration with distributed computing
• Remote spaces

• MPI interface taking Kokkos data structures



1717 Open slide master to edit


