
ORNL is managed by UT-Battelle LLC
for the US Department of Energy

The Kokkos ecosystem -
Sustaining performance portability at
the exascale era

Damien Lebrun-Grandié
Christian Trott

22 Open slide master to edit

ORNL Frontier
AMD GPUs LANL Crossroads

Intel CPUs ANL Aurora
Intel GPUs Fugaku

ARM CPUs

PNNL ExaWind
Wind Turbine CFD

SNL LAMMPS
Molecular Dynamics

UT Uintah
Combustion

ORNL Raptor
Large Eddy Sim

Applications Libraries Frameworks

NERSC Perlmutter
NVIDIA GPUs

Kokkos

33 Open slide master to edit

What is Kokkos?

• A C++ Programming Model for Performance Portability
– Implemented as a template library on top of CUDA, OpenMP, …
– Aims to be descriptive not prescriptive
– Aligns with developments in the C++ standard

• Expanding solution for common needs of modern science/engineering
codes
– Math libraries based on Kokkos
– Tools which enable insight into Kokkos

• It is Open Source
– Maintained and developed at

https://github.com/kokkos

• It has many users at wide range of institutions

https://github.com/kokkos

44 Open slide master to edit

2003

2008

2010

2013

2014

2015

2016

2017

2018

2019

2020

Sp
ar

se
 L

in
ea

r
Al

ge
br

a
ke

rn
el

s

KokkosNode added

(abstract execution)

LAM
M

PS and

Trilinos add Kokkos

G
ithub release with

form
al m

aintenance

SPARTA and

SPARC with Kokkos

ECP Funded m
ulti-

labs developm
ent

team

Ko
kk

os
Ar

ra
y

(d
at

a
ab

st
ra

ct
io

ns
)

Ko
kk

os
Ar

ra
y

na
m

e
dr

op
pe

d,
 A

TD
M

ad

op
ts

 K
ok

ko
s

Ko
kk

os
 K

er
ne

ls
Ad

de
d

EM
PI

RE
 a

dd
s

Ko
kk

os
 w

ith
 D

AR
M

A

3
Ne

w
EC

P
Ba

ck
en

ds

NVIDIA GPUs

Titan

AMD APUs

Xeon Phi IBM Power -
NVIDIA GPUs

Trinity

Summit/Sierra

AMD GPUs

Intel GPUs

Frontier

Kokkos Timeline

55 Open slide master to edit

Linear Algebra Kernels Graph Kernels

Kokkos Kernels

Kokkos Core
Parallel Execution Parallel Data Structures

Science and Engineering Applications

Kokkos Ecosystem

Kokkos
Tools

Debugging

Profiling

Kokkos
Support

Tutorials

Bootcamps

App support

Documentation

Tuning

Global Arrays

Kokkos Remote Spaces

Python Bindings

PyKokkos

Python Programming

Data Snapshot

Resilience

Redundant Execution

View Bindings

Fortran Interop

Trilinos PETSc

ArborX

Cabana

The Kokkos Ecosystem - Today

66 Open slide master to edit

SNL

DOE (not SNL)

Universities

Other

https://kokkosteam.slack.com
• >1200 registered users
• >150 institutions

• Including 34 European

Kokkos Slack

Applications and Libraries
• Estimated 150-300 HPC projects using Kokkos
• On the order of three-dozen apps run science and

engineering production runs with Kokkos
• Many apps use multiple Kokkos based libraries

• Similar distribution as the Slack User

Kokkos Developers

Kokkos Community

50% of C++ based DOE ECP codes use Kokkos

https://kokkosteam.slack.com/

77 Open slide master to edit

Kokkos Core - Contributions

SNL

Other
SNL

DOE (not SNL)

Other

2015-2017 2021-2023

• Most of Kokkos-Tools and Kokkos-Kernels development still at Sandia
• ISO C++ Contribution well distributed over labs

ECP Funding

88 Open slide master to edit

Frontier/Aurora support status

AMD
Frontier/El Capitan: HIP
Production-ready since Kokkos 4.0

– Fine grained tasking is missing

PR and nightly testing on AMD GPUs

Generally, performance is good

AMD GPUs struggle a bit compared to NVIDIA
GPUs with cache intensive workloads

Performance Portability of Kokkos code is
excellent however

See for example native
Kokkos SPMV
implementation beating
vendor libraries for a
range of use cases

Intel
Aurora: DPC++/SYCL
Still experimental

– DPC++/SYCL is still evolving (not fully
stabilized)

– Tracking latest toolchain developments

– Regressions in functionality still common

PR testing on NVIDIA GPUs, nightly testing on
actual Intel PVC hardware

Most Kokkos-based ECP applications pass
testing with the SYCL backend

Performance similar to AMD
– Some issues around bandwidth – only

getting about 65% of peak

99 Open slide master to edit

Performance benchmarks

0 500 1000 1500 2000 2500

Intel Max 1100

NVIDIA H100

AMD MI250 GCD

Bandwith performance in GB/s

CGSolve Stream Peak BW

1010 Open slide master to edit

Sustainment: a self reinforcing cycle?

Good
product

UsersSustained
funding

Sustained
funding leads to
better product

Sustained funding == trust
More usage leads to more funding

More Users
More Feedback

There is strength in numbers: collaboration on core product
good for everyone!

1111 Open slide master to edit

Pillars for Long Term Sustainment

Open Source
• Enable wider set of contributor

• Risk mitigation for partner institutions – no one can just take the project away;
worst case scenario is institutional fork with internal continued development

• Permissive license critical for industry participation

Core Funding
• Need a group of institutions to sustain core development team

• NNSA – Sandia National Laboratories (+ Los Alamos National Laboratory?)
• DOE – ASCR Facilities – Oak Ridge Leadership Computing Facility, NERSC, … ?

• CEA starting now

Open Governance
• Encourage participation of institutions by enabling say in direction

• Enable path for new core funding teams to enter

1212 Open slide master to edit

High Performance Software Foundation

Primary Goal: Enable true partnerships on Kokkos
via open governance.

Linux FoundationHPSF

Kokkos Technical Project Spack
Technical

ProjectTechnical Board

Kokkos Core Kokkos Kernels

Remote Spaces PyKokkos

Primary Projects

Incubation Projects

Foundation Board

• Cloud Native Computing
Foundation

• OpenSSF
• LF Networking
• RISC-V

https://hpsf.io

Trilinos
Technical

Project

https://hpsf.io/

1313 Open slide master to edit

Kokkos and ISO C++

Long term sustainment via integration of Kokkos features
into ISO C++ standard

Getting something into ISO C++

• Requires a lot of effort

• mdspan was 9 years, but we didn’t know what we were doing

• linalg took 5 years to get into draft

• Requires prototype and usage experience

• Need to be able to show successful use in field by sizeable community

Kokkos as the HPCs proving ground

• Large enough community

• More agile development of new features possible

• Kokkos team has gained trust of ISO C++ community as well as standard library implementers

In the standard
• ”this” capture C++17
• atomic_ref C++20
• mdspan C++23
In flight for 26
• linalg – BLAS with extensions –

in draft
• Batched linalg
• mdarray
• submdspan – in draft
• More accessors and layouts
• simd
• senders/receivers

We need long term engagement with ISO C++ as integral
part of Kokkos effort.

1414 Open slide master to edit

Sustainment through standardization
Multi-dimensional arrays

template<
 class T,
 class Extents,
 class LayoutPolicy = std::layout_right,
 class AccessorPolicy = std::default_accessor<T>

> class mdspan; (since C++23)

template <
 class DataType
 [, class LayoutType]
 [, class MemorySpace]
 [, class MemoryTraits]>
class Kokkos::View;

Kokkos::View<double**> A("A", M, N);
Kokkos::View<double[4][4], Kokkos::LayoutLeft> B("B");

std::mdspan A(ptr, M, N);
std::mdspan<double, std::extents<int, 4, 4>, std::layout_left> B(ptr);

1515 Open slide master to edit

Sustainment through standardization
Linear algebra

template<
 [class ExecutionPolicy,]
 InMatrix InMat,
 InVector InVec,
 OutVector OutVec
> void matrix_vector_product([ExecutionPolicy&& exec,]
 InMat A,
 InVec x,
 OutVec y); (since C++26)

template<
 [class ExecutionHandle,]
 class InMat,
 class InVec,
 class OutVec>
void KokkosKernels::gemv (
 [const ExecutionHandle& exec,]
 const char trans[],
 typename InMat::const_value_type& alpha,
 InMat A,
 OutMat x,
 typename OutVec::const_value_type& beta,
 OutVec y);

dgemv('N', M, N, 1., A, 1, x, 1, 0., y, 1); // 11 parameters

KokkosKernels::gemv('N', 1., A, x, 0., y);

std::matrix_vector_product(A, x, y);

BLAS

KokkosKernels

Standard C++

1616 Open slide master to edit

Our ideas for future directions of Kokkos

Edge computing / Embedded Support
• Many of the same concerns as HPC – resource constraint, performance critical

• Many different devices including FPGAs

Programming Language Safety
• More concern about cyber security – how do we write safer code?

• Kokkos data abstractions (View/mdspan/mdarray) enable safer encapsulation –
could make it almost impossible to have out-of-bounds memory access

• Combined with static analysis could be significant step to enable C++ codes
which are memory safe by design

Better integration with distributed computing
• Remote spaces

• MPI interface taking Kokkos data structures

1717 Open slide master to edit

