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ABSTRACT

Computing the Euclidean minimum spanning tree (Emst) is a com-
putationally demanding step of many algorithms. While work-
efficient serial and multithreaded algorithms for computing Emst
are known, designing an efficient GPU algorithm is challenging
due to a complex branching structure, data dependencies, and load
imbalances. In this paper, we propose a single-tree Borůvka-based
algorithm for computing Emst on GPUs. We use an efficient nearest
neighbor algorithm and reduce the number of the required distance
calculations by avoiding traversing subtrees with leaf nodes in the
same component. The developed algorithms are implemented in
a performance portable way using ArborX, an open-source geo-
metric search library based on the Kokkos framework. We evaluate
the proposed algorithm on various 2D and 3D datasets, show and
compare it with the current state-of-the-art open-source CPU im-
plementations. We demonstrate 4-24× speedup over the fastest
multi-threaded implementation. We prove the portability of our im-
plementation by providing results on a variety of hardware: AMD
EPYC 7763, Nvidia A100 and AMD MI250X. We show scalability of
the implementation, computing Emst for 37 million 3D cosmologi-
cal dataset in under a 0.5 second on a single A100 Nvidia GPU.
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1 INTRODUCTION

Given a set of 𝑛 points in a 𝑑-dimensional space, the Euclidean
minimum spanning tree (Emst) problem determines the minimum
spanning tree (Mst) of the distance graph of the set, i.e., a graph
where each pair of vertices are connected by an edge of weight
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Figure 1: Performance (in MFeatures/sec) for the dual-

tree [18] (MLPACK), WSPD [27] (MemoGFK), and single-tree

(this work using ArborX) approaches on AMD EPYC 7763

CPU (sequential and multi-threaded), and Nvidia A100 and

AMDMI250X (single GCD) GPU architectures for a 3D cos-

mological dataset (Hacc37M).

equal to the Euclidean distance between them. Computing Emst
is an important task in a variety of applications, including data
clustering [7], Euclidean traveling salesman problem [12], cosmol-
ogy [22], wireless network connectivity [17], computational fluid
dynamics [25], and many others.

Most algorithms for computing anMst on a general graph are
variants of the three classical algorithms: 1926 Borůvka’s algo-
rithm [5], 1956 Kruskal’s algorithm [15] and 1957 Prim’s algo-
rithm [24]. These algorithms share the same general idea, construct-
ing anMst iteratively. At any instant during the computation, an
algorithm maintains a set of non-overlapping sets of vertices called
components. Initially, all components consist of a single vertex. On
each step of an algorithm, some components are merged using a
subset of the graph edges. The algorithm terminates when there
remain no edges connecting separate components.

The fundamental difference of the Emst problem and theMst
one lies in the graph structure. Mst operates on a sparse graph,
where the number of edges is a small fraction of all possible edges
with the same vertices. On the other hand, Emst uses the distance
graph, which is complete, with each pair of vertices connected by
an edge, for a total of 𝑛(𝑛 − 1)/2 edges. It is prohibitively expensive
to both construct and store a complete graph for large problems,
as well as run classical Mst algorithms on such a graph. Thus, the
distance graph is typically used implicitly.

To solve the Emst problem, Bentley and Friedman [4] proposed
combining classicalMst algorithms with a nearest-neighbor search
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Figure 2: Borůvka’s algorithm. (a) Initial state (each component having a single vertex). (b) The state after a few Borůvka

iterations. (c) Closest neighbors from a different component for each vertex. (d) The shortest outgoing edge for each component.

(e) The new components after the merge (the initial state of the next Borůvka iteration).

algorithm using a spatial indexing structure (e.g., a k-d tree). How-
ever, a straightforward implementation of this approach performs
poorly. The main bottleneck of the algorithm is in the excessive
number of distance calculations in the later iterations of an Mst
algorithm. Since, the key challenge in designing an efficient Emst al-
gorithm has been in careful pruning of distance calculations during
the runtime.

Two popular approaches have emerged: one based on the well
separated pair decomposition (Wspd) [6, 23, 27], and the other using
the dual-tree framework [18]. Under some mild assumptions on the
distribution of the data points, the dual-tree method provides the
sharpest worst-case bounds for any dimensional space. The two
approaches have been shown to perform well on CPUs, including
multi-threaded parallelization.

However, the existing approaches are limited in scalability and
performance for an efficient GPU computation. The dual-tree algo-
rithm, in general, is outperformed by the best-known Wspd-based
approach. And whileWspd is asymptotically O(𝑛)[2], the hidden
constants of the algorithm are very high. In fact, we observed that
the Wspd computation dominates the overall time in the Emst
computation and is comparable with a single-tree implementation
in the sequential case. Thus, an Emst algorithm or implementation
that is sequentially efficient, is scalable with respect to problem
size, and is amenable to GPU parallelism remains an open problem.

In this paper, we propose an efficient algorithm for Emst suitable
for both CPUs and GPUs. Our algorithm is based on Borůvka’s
algorithm and uses a single tree to perform the nearest-neighbor
queries. We use a bounding volume hierarchy (BVH) as our tree
structure as it is very efficient for unstructured low-dimensional
data on GPU (we note, however, that the described algorithms are
general and are applicable to other tree structures such as k-d tree).
To reduce the number of the distance calculations when finding the
closest outgoing edge for a given component (the most expensive
part of each Borůvka iteration), we keep track of the component
membership of the children of the internal tree nodes. This allows
nearest neighbor queries to bypass subtrees where all leaf nodes
lie in the same component.

Our motivation for this work comes from an astronomy appli-
cation which requires high performance to analyze the data from
a cosmological simulation. We show the results from one such

dataset in Figure 1. Additionally, we show that our GPU implemen-
tation achieves 270 MFeatures/sec (million features, the product of
the number of points and dimensions, processed per second) on
nVidia A100, which is 17× faster than best known multithreaded
implementation.

In our implementation, we used ArborX [16], a performance
portable geometric search library using Kokkos framework [26].
This allows us to study the algorithm on both CPU and multiple
GPU architectures (e.g., Nvidia A100, AMD MI250X). We evalu-
ate the proposed algorithm on various 2D and 3D datasets, and
compare it with the current state-of-the-art open-source CPU im-
plementations.

Our key contributions are:

• We provide the first performance portable algorithm and
implementation for the Emst problem. Our algorithm is effi-
cient in the sequential case and outperforms the best publicly
known sequential algorithm in a best-case by 50% (see Sec-
tion 4.1).
• Compared to the best available multithreaded algorithm,
our GPU implementation is up to 24× faster, and our multi-
threaded implementation is within 0.5-2×. This results in a
best-case performance of 270 MFeatures/sec. In contrast, the
best sequential algorithm achieves 1.2 MFeatures/sec on the
latest AMD EPYC 7763 and 16 MFeatures/sec by an efficient-
multithreaded implementation(See section 4.2).
• We show that our proposed algorithm gracefully handles
certain non-Euclidean distances. Specifically, we show that
our algorithm is efficient when used withmutual reachability
distance, a variant of Euclidean distance used in a popular
clustering algorithm Hdbscan* [20].
• We provide a comprehensive set of experiments on three ar-
chitectures to establish or provide empirical evidence for
several properties of our algorithm and implementation
including performance portability, asymptotic linear cost
growth with problem size and lower threshold problem size
to achieve performance saturation relative to CPU.

The remainder of the paper is organized as follows. Section 2
introduces the Borůvka algorithm and gives an overview of the re-
lated work. Section 3 describes the proposed algorithm.We compare
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Algorithm 1 Borůvka’s algorithm
1: procedure Boruvka(𝐺 = {𝑉 , 𝐸,𝑊 })
2: 𝑇 ← (𝑉 , ∅) ⊲ initialize graph𝑇 with vertices from𝑉 and no edges
3: while𝑇 has more than one connected component do
4: for all components𝐶 of𝑇 do

5: 𝑆 ← ∅
6: for all vertices 𝑣 in𝐶 do

7: 𝐷 ← {𝑎 ∈ 𝐸 | 𝑎 = (𝑣, 𝑤 ), 𝑤 ∉ 𝐶 }
8: 𝑒 ← minimum weight edge in 𝐷

9: 𝑆 ← 𝑆 ∪ 𝑒
10: 𝑒 ← minimum weight edge in 𝑆

11: Add 𝑒 to the graph𝑇

our implementation with the state-of-the-art CPU implementations
and demonstrate the algorithm’s performance on GPUs in Section 4.

2 BACKGROUND

In this Section, we will briefly review the background and the
related work relevant to subsequent discussion. Notations: Let
𝐺 = {𝑉 , 𝐸,𝑊 } be a weighted undirected connected graph. Here, 𝑉
is the set of vertices of size 𝑛, 𝐸 is the set of edges of size𝑚, and𝑊
are the weights of the edges. We will use a component to describe a
subset of of 𝑉 with its meaning clear from the context.

MST computation. For a connected graph, the Mst is the tree
subgraph with the least sum of edge weights. Mst is unique if
all edge weights are distinct. Many algorithms to compute Mst
are based on a greedy approach, using the fact that the minimum
weight edge in any edge cut will be in Mst if it is unique (if it is
not unique, any one of the edges with minimum weight can be
chosen). The three most popular algorithms for computing Mst
are Borůvka’s algorithm [5], Prim’s algorithm [24], and Kruskal’s
algorithm [15].

Prim’s algorithm operates on a single component. At the start,
the component is assigned a single vertex. On each step of the
algorithm, the component is expanded by adding a vertex connected
by an edge of the minimum weight in the component’s cut. Prim’s
algorithm has O(𝑚 log𝑛) complexity, and is inherently sequential.

In the Kruskal’s algorithm, each vertex is initially assigned to its
own component, and all edges are sorted by weights. On each step,
the edge with the minimum weight is chosen among all edges that
have the vertices in different components. The components of the
vertices of that edge are then merged together. Kruskal’s algorithm
has O(𝑚 log𝑛) complexity. It allows for a limited parallelism which
is insufficient for a GPU.

Borůvka’s algorithm. Borůvka’s algorithm was one of the
first published algorithms to compute an Mst. Similarly to the
Kruskal’s algorithm, it maintains a set of components, each initially
containing a single vertex. Similarly to the Prim’s algorithm, each
component is expanded through finding the minimum weight edge
in its cut. Unlike Prim’s algorithm, however, the computation of the
minimum weight edges can be done in parallel, and components
are expanded through merging components together, rather than
adding a single vertex.

At the start of the Borůvka’s algorithm (Algorithm 1), each com-
ponent is initialized with an individual vertex, 𝐶𝑖 = {𝑣𝑖 }. On each
step, the algorithm determines the edge with the minimum weight

in the cut of each active component. In other words, for a compo-
nent 𝐶𝑖 we find an edge 𝑒𝑖 = (𝑣,𝑢) ∈ 𝐸, 𝑣 ∈ 𝐶𝑖 and 𝑢 ∈ 𝐶 𝑗 , 𝑗 ≠ 𝑖 ,
with the minimum weight. We will call such edge 𝑒𝑖 the smallest
outgoing edge for the component 𝐶𝑖 , and denote 𝐶𝑖 → 𝐶 𝑗 . The
found edge is added to the list of edges in the Mst, and the two
components 𝐶𝑖 and 𝐶 𝑗 are merged, 𝐶𝑖 ← 𝐶𝑖 ∪𝐶 𝑗 .

It is not guaranteed that the smallest outgoing edge for 𝐶𝑖 with
an end in 𝐶 𝑗 would be the smallest outgoing edge for 𝐶 𝑗 . Instead,
the found edges result will typically produce a chain of components
𝐶𝑖1 → · · · → 𝐶𝑖𝑠−1 ↔ 𝐶𝑖𝑠 . Each such chain terminates in a pair of
components with their smallest outgoing edges pointing to each
other. All components belonging to the same chain can be merged
together in the same Borůvka iteration. In practice, this results in
the Borůvka’s algorithm requiring far fewer iterations compared to
its theoretical upper bound of ⌈log2 (𝑛)⌉.

Figure 2 demonstrates the steps in a single Borůvka iteration.
At the beginning of the 𝑘-th iteration, we have five components
(Figure 2b). First, each point finds the closest neighbor belonging to
a different component than its own (Figure 2c). This forms a set of
candidate edges for each component. Then, we choose the shortest
candidate edge for each component (Figure 2d) and add it to a set
of foundMst edges. Finally, the newly foundMst edges connect
previously disconnected components. To merge the components,
we compute the new component label for each point. We can see
that one of the new components was formed by merging three
components.

Borůvka’s algorithm is guaranteed to converge (i.e., produce a
correct Mst) only when all edge weights are distinct. Otherwise,
the found edges may result in a cycle. This situation may be avoided
by a suitable tie-breaking resolution when selecting the smallest
outgoing edges. One of the ways to achieve that is by using indices
of the vertices for the comparison of the edges. For example, given
two edges 𝑒1 = (𝑣1,𝑤1) and 𝑒2 = (𝑣2,𝑤2) of the same weight, one
could define 𝑒1 < 𝑒2 ifmin(𝑣1,𝑤1) < min(𝑣2,𝑤2), ormin(𝑣1,𝑤1) =
min(𝑣2,𝑤2) and max(𝑣1,𝑤1) < max(𝑣2,𝑤2).

The parallel nature of the Borůvka’s algorithm make it well
suited for a GPU implementation.

Emst computation. Given a set of points 𝑋 in a 𝑑-dimensional
space, Euclidean minimum spanning tree (Emst) is defined as an
Mst of its distance graph. The distance graph D of 𝑋 is a complete
graph, with each vertex corresponding to a point in 𝑃 , and each
edge 𝑒𝑖 𝑗 = (𝑝𝑖 , 𝑝 𝑗 ) having the weight𝑤𝑖 𝑗 = ∥𝑝𝑖 − 𝑝 𝑗 ∥2. Explicitly
computing and storing D is undesirable as it requires O

(
𝑛2𝑑

)
op-

erations and O
(
𝑛2

)
storage, which is prohibitively expensive for

large datasets. For that reason, it is usually used implicitly.
As the complexity of the Mst algorithms is at least linear in

the number of edges, regularMst algorithms are not suitable for
the Emst problem as they would have quadratic complexity with
respect to the number of points O

(
𝑛2

)
.

For the two-dimensional case,Mst calculation can be performed
on a Delaunay triangulation of the points, which only has O(𝑛)
edges. However, Delaunay triangulation worst-case complexity
grows from O(𝑛 log𝑛) in the two-dimensional case to Θ

(
𝑛2

)
for

higher dimensions.
Instead, Emst algorithms combine a generalMst algorithm with

a data structure to accelerate the search for the nearest neighbors.
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Bentley and Friedman [4] proposed the first such Emst algorithm
using a k-d tree-based nearest neighbor searches together with
Prim’s algorithm. The authors estimated O(𝑛 log𝑛) operations for
most distributions of points, albeit not rigorously. A key limitation
of this approach is that it will often perform many redundant dis-
tance computations. This stems from the iterative nature of Mst
algorithms, where the nearest-neighbor queries can be run multiple
times for the same points.

Pruning the number of the redundant distance computations
for Emst was explored in many works. The two popular strategies
emerged: the well-separated pair decomposition (Wspd) [6], and the
dual-tree algorithms [18].

A pair of sets of points (𝑃,𝑄) is called well-separated if the short-
est distance between any point in 𝑃 to any point in𝑄 is greater than
the diameter of both of the sets. For a given set of points, Wspd
is defined as a sequence of well-separated pairs (𝑃𝑖 , 𝑄𝑖 ) such that
for any pair of points 𝑝, 𝑞 ∈ 𝑋 there exists a well-separated pair
(𝑃𝑘 , 𝑄𝑘 ) with 𝑝 ∈ 𝑃𝑘 and 𝑞 ∈ 𝑄𝑘 . WithWspd, Emst computation
can be reformulated as a computation of the bichromatic closest
pair (Bcp) [2] between the well-separated pairs, and performing
an Mst computation using the found Bcp edges. The first algo-
rithm based on this approach was proposed in Agrawal et. al. [2].
Narasimhan [23] proposed GeoMST which combined Wspd and
Bcp with the Kruskal’s algorithm. The algorithm was improved
further by computing some Bcp lazily or avoiding them altogether.
Recently, Wang et.al [27] developed a parallel shared-memory vari-
ant based on this approach. To our knowledge, this is currently
the fastest sequential and multithreaded parallel open-source im-
plementation. The algorithm proposed in [27] algorithm was also
shown to work with certain non-Euclidean distance metrics, such
as the mutual-reachability distance for computing Hdbscan* [7].

March et al [18] proposed an Emst algorithm based on the dual-
tree framework. Unlike the single tree algorithm of Bentley and
Friedman, where the nearest neighbor queries are performed sep-
arately for every point, the dual-tree algorithm performs such a
query for a subtree in the spatial search tree. The algorithm used
the component-wide upper and lower distance bounds during the
tree traversal to avoid unnecessary distance computations. Under
certain assumptions on the distribution of points, dual-tree has the
best worst-case asymptotic complexity. In [19], researchers used
the algorithm for non-Euclidean mutual-reachability distance of
the Hdbscan* algorithm.

Kokkos. Kokkos [9, 26] is a performance-portable program-
ming model. It provides abstractions for expressing several parallel
execution patterns such as parallel_{for,reduce,scan}. These
patterns take function objects (e.g., C++ lambdas) as arguments
to execute for a given kernel index. While fairly restricted, this
programming models allows maximum flexibility for mapping the
patterns to an execution model. To this end, Kokkos provides an exe-
cution space abstraction that represents an execution resource, and a
memory space that represents an abstract memory resource. A user
is required to make sure that an execution space has access to the
memory space that the data is in. For example, if the execution space
is Kokkos::Cuda and the data is on the host (Kokkos::HostSpace
memory space), an explicit data transfer is required to put the data
on the device (Kokkos::CudaSpace memory space).

Kokkos also provides an abstraction for a multi-dimensional ar-
ray data structure called View. It is a polymorphic structure, whose
layout depends on the memory the data resides in (host or device).
For example, a one-dimensional view on a GPUwould automatically
result in a coalesced data access pattern.

Together, these abstractions are implemented in a C++ library1.
Kokkos supports multiple backends, allowing the code written in
Kokkos to run on a variety of hardware. Pertinent to this work,
Kokkos supports Nvidia GPUs through the Cuda backend, AMD
GPUs through the HIP backend, serial host through the Serial
backend, and parallel host through the OpenMP backend.

ArborX. ArborX [16] is a performance-portable geometric
search library based on Kokkos. At its core, ArborX implements a
highly efficient parallel data structure, bounding volume hierarchy
(BVH), to allow fast computation of the two types of the search
queries: spatial (e.g., searching for all objects within a certain dis-
tance of an object of interest) and nearest (e.g., searching for a
certain number of the closest objects regardless of their distance
from an object of interest).

ArborX implements a linear BVH structure following the
works [3, 13], which has been shown to perform well for low-
dimensional data on GPUs. The user data is linearized using a
space-filling curve (Z-curve) to improve the locality of the geomet-
ric objects during the construction. It is then followed by a fully
parallel bottom-up construction algorithm to produce a binary tree
structure (hierarchy). Given 𝑛 data points, the resulting tree would
have 𝑛−1 internal nodes and 𝑛 leaf nodes, for a total of 2𝑛−1 nodes.
This very fast construction algorithm produces a tree of sufficient
quality in most situations.

During the search (also called a traversal), each thread is assigned
a single query, and all the traversals are performed independently
in parallel in a top-down manner. To reduce the data and thread
divergence, the queries are pre-sorted with the goal to assign neigh-
boring threads the queries that are geometrically close.

3 ALGORITHM

Our algorithm follows the general approach of combining a classical
Mst algorithm with an efficient data structure for finding nearest
neighbors for the components. We use the Borůvka’s algorithm
as it exposes the most parallelism out of all classical algorithms
(see Section 2).

In this work, we use a single tree algorithm for two reasons.
First, a parallel implementation of the dual-tree algorithms on GPU
accelerators is an open research problem, and a high-performance
implementation is a significant challenge. Second, a single-tree
approach is much easier to implement by reusing efficient parallel
geometric search algorithms, allowing to tap into existing efficient
GPU implementations. As we will demonstrate in Section 4, a single
tree implementation works well in practice.

The Borůvka’s algorithm is iterative in nature (see Section 2
for an overview). Figure 3 provides a high level overview of
our implementation, with a detailed description provided later
in this Section. Each iteration consists of two phases. In the first
phase, we find the shortest outgoing edge for each component

1https://github.com/kokkos/Kokkos

https://github.com/kokkos/Kokkos
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// ExecutionSpace is the Kokkos execution space

// (where a kernel is executed ). MemorySpace is

// the Kokkos memory space (where the data resides ).

ExecutionSpace exec_space;

Kokkos ::View <int*, MemorySpace > labels("labels", n);

// Initialize labels by placing each vertex into a

// separate component

Kokkos :: parallel_for(

Kokkos :: RangePolicy <ExecutionSpace >(exec_space , 0, n),

KOKKOS_LAMBDA(int i) { labels(i) = i; });

// Construct BVH

ArborX ::BVH <MemorySpace > bvh(exec_space , data);

// Perform Boruvka iterations

int num_components = n;

do {

// Propagate leaf node labels to the internal nodes

// [parallel_for]

reduceLabels(exec_space , bvh , labels );

// Compute upper bounds on the length of the shortest

// outgoing edge for each component [parallel_for]

Kokkos ::View <float*, MemorySpace > upper_bounds =

computeUpperBounds(exec_space , bvh , labels );

// Find the shortest outgoing edge for each component

// [parallel_for]

Kokkos ::View <Kokkos ::Pair <int ,int >*, MemorySpace >

component_out_edges =

findComponentsOutgoingEdges(exec_space , bvh ,

labels , upper_bounds );

// Merge components using the found edges through

// updating the labels [parallel_for]

num_components =

mergeComponents(space , component_out_edges , labels );

} while (num_components > 1);

Figure 3: The single-tree Emst algorithm C++ implementa-

tion using ArborX and Kokkos.

(findComponentsOutgoingEdges). Using these edges, the compo-
nents are merged in the second phase (mergeComponents). We will
now describe the algorithms for both phases.

Finding the shortest outgoing edge

We will denote by 𝐶𝑘
𝑖
the 𝑖th component on the 𝑘th Borůvka itera-

tion. At the start of the Borůvka’s algorithm, each component is
initialized with an individual vertex, 𝐶0

𝑖
= {𝑣𝑖 }. As the algorithm

proceeds, the components are merged together using the found
edges.

Let C𝑘 = {𝐶𝑘
𝑖
}𝑠𝑘
𝑖=1 be the set of components on iteration 𝑘 , 𝐶𝑘

𝑖
∩

𝐶𝑘
𝑗
= ∅ for 𝑖 ≠ 𝑗 . The goal of this phase of the algorithm is to find

edges 𝑒𝑘
𝑖
, 𝑖 = 1, . . . , 𝑠𝑘 such that 𝑒𝑘

𝑖
= argmin{∥(𝑢𝑘

𝑖
, 𝑣𝑘
𝑖
)∥ | 𝑢𝑘

𝑖
∈

𝐶𝑘
𝑖
and 𝑣𝑘

𝑖
∈ 𝐶𝑘

𝑗
, 𝑗 ≠ 𝑖}. The component𝐶𝑘

𝑗
is the closest component

to 𝐶𝑘
𝑖
, and we denote this relationship by 𝐶𝑘

𝑖
→ 𝐶𝑘

𝑗
.

This problem can be seen as the nearest neighbor problem with
an additional constraint that the nearest neighbor of a point must
belong to a component different from the one the point belongs to,

0 1 2 3 4 5 6 7

1 2 6

3 5

4

0

Figure 4: Propagation of leaf node labels to the internal nodes.

Gray denotes invalid labels.

followed by choosing the shortest edge for all points in a component.
Thus, we can follow a general approach to solving nearest neighbor
problem on GPUs. Using ArborX, this is done by assigning each
point to a single thread and executing the neighbor searches in
bulk (i.e., with all threads launching at the same time). Each thread
executes a stack-less top-down traversal.

One of the challenges in designing an efficient algorithm lies
in that the components grow in size with each Borůvka iteration.
Examining all nearest points regardless of their component mem-
bership becomes progressively more expensive. Without trimming
the number of the distance computations, this leads to O

(
𝑛2

)
cost

on the later Borůvka iterations.
Thus, we propose two optimization procedures to maintain a

moderate cost of each tree traversal regardless of the component
size.

Optimization 1: subtree skipping. We focus on reducing the
number of the tree nodes encountered during the traversal by each
thread. Specifically, individual thread skips the subtrees where each
leaf node belongs to the same component as the point assigned to
the thread. A similar approach was proposed in [19] in the context
of dual-trees. While the benefit of this approach is limited on the
earlier iterations of the algorithm, when the components are small,
it is critical on the later iterations. In our experience, the cost of
Borůvka’s iterations tends to progressively decrease, with later
iterations typically taking a small fraction of the earlier ones.

Our implementation uses a flat array of size 𝑛, called labels, to
indicate a membership of a point in a component2. As each point
in the dataset is also a leaf in the constructed tree, we can associate
each leaf node with a label of its component.

Before running the nearest neighbor algorithm, we propagate
the labels from the leaf nodes to the internal nodes (reduceLabels
in Figure 3). For a binary tree-based index, such as our case, this
is done in a single bottom-up traversal algorithm (parallel_for).
Each thread is assigned a leaf node, and traverses up the tree. The
first thread accessing an internal node stores its label and terminates,
while the second thread combines both labels, updates the internal
node’s label and continues upwards. If the labels of the children of
an internal node are the same, the same label is assigned to that
internal node. Otherwise, the internal node is assigned an invalid
label to indicate that the corresponding subtree has leaf nodes from
multiple components. Figure 4 shows an example of internal node
labels based on the labels of the leaf nodes. We see that the leaf
2The content of the array changes on each Borůvka iteration, as the components are
merged together.
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Algorithm 2 Optimized single-thread nearest neighbor traversal
algorithm for a given thread with index 𝑖 .
1: 𝑝𝑜𝑖𝑛𝑡 ← 𝑑𝑎𝑡𝑎 (𝑖 ) ⊲ data point assigned to a thread 𝑖
2: 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ← 𝑙𝑎𝑏𝑒𝑙𝑠 (𝑖 ) ⊲ component that the point belongs to
3: 𝑟𝑎𝑑𝑖𝑢𝑠 ← 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑠 (𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ) ⊲ cutoff radius
4: 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ←∞ ⊲ the best found distance
5: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← ∅ ⊲ the best found neighbor
6: Initialize stack with the root node
7: while stack is not empty do

8: Pop the stack and assign it to 𝑛𝑜𝑑𝑒
9: if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑜𝑖𝑛𝑡, 𝑛𝑜𝑑𝑒 ) > 𝑟𝑎𝑑𝑖𝑢𝑠 then

10: continue

11: for all children 𝑐ℎ𝑖𝑙𝑑 of 𝑛𝑜𝑑𝑒 do

12: 𝑑 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑜𝑖𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑 )
13: if 𝑙𝑎𝑏𝑒𝑙𝑠 (𝑐ℎ𝑖𝑙𝑑 ) ≠ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 and 𝑑 ≤ 𝑟𝑎𝑑𝑖𝑢𝑠 then

14: if 𝑐ℎ𝑖𝑙𝑑 is a leaf node then
15: if 𝑑 < 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then

16: 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑑

17: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 𝑐ℎ𝑖𝑙𝑑

18: 𝑟𝑎𝑑𝑖𝑢𝑠 ← 𝑑

19: else

20: Insert 𝑐ℎ𝑖𝑙𝑑 into the stack
21: Update the component’s shortest outgoing edge if necessary

nodes belong to three different components, and that there are two
subtrees (green and orange) containing the leaf nodes belonging
to a single component. A thread performing the nearest neighbor
search for a point with a green label will skip the subtree with the
root at internal node 3.

Optimization 2: upper bounds for the outgoing edges. Fur-
ther improvements may be achieved by using the fact that we are
looking for the closest neighbor for all points in a component. The
distance to an encountered neighbor of one point automatically
provides an upper bound on the shortest outgoing edge for the full
component. In the extreme case, this upper bound can be updated
each time a thread encounters a leaf node.

However, we take a more moderate approach. We observe that if
two points belong to different components, we can use the distance
between them as an upper bound for the shortest outgoing edge
for both of the components. For this bound to be useful, it is also
desirable that these two points are close to each other. In general,
it is not a trivial task to find such pairs. However, one of the steps
in constructing a linear BVH is sorting data along a space-filling
curve (typically, Z-curve using Morton indices). We then use any
neighboring pair of points on the curve with different labels to ini-
tialize the upper bounds for the components (computeUpperBounds
in Figure 3). This works well in practice as a pair of points with
close Morton indices are likely to be close geometrically.

Traversal algorithm. Algorithm 2 shows the pseudo-code of
the nearest neighbor algorithm executed by an individual thread.
On line 3, the cutoff radius is set to the upper bound distance for the
component. If the distance from a data point to a bounding volume
of a tree node less than the current value of the cutoff radius, the
children of the node are examined (line 11). We check that there is
at least one node belonging to a different component in the subtree
with 𝑐ℎ𝑖𝑙𝑑 as root, and that the bounding volume of the 𝑐ℎ𝑖𝑙𝑑 node
is within the cutoff distance (line 13). If a child node is a leaf node

closer than the closest neighbor found so far (line 15), we update
the cutoff radius value and the closest neighbor values. Otherwise,
if the child is an internal node, it is inserted into the stack for the
later examination (line 20). Finally, once the closest neighbor this
point is found, we compare and update the component’s shortest
outgoing edge if necessary (line 21).

Non-Euclidean metrics. We also note that while we described
the procedure for Euclidean distance, it will also work for certain
other metrics. In particular, the mutual reachability metric used in
Hdbscan* can be integrated with a regular nearest neighbor traver-
sal. The only change to the algorithm is that the cutoff radius during
the traversal is set to the mutual reachability distance instead of the
regular Euclidean distance. This is made possible by the fact that
the mutual reachability distance is always greater or equal to the
Euclidean one, and thus nodes truncated by the mutual reachability
distance will also be truncated by the Euclidean distance.

Merging components together

In the second phase, we use the edges found in the first phase to
merge components together. As mentioned in Section 2, a single
iteration of the Borůvka’s algorithm results in chains of components.
The merge procedure is straightforward and is embarrassingly
parallel. For every point, we follow the chain until reaching the
terminal pair of components with their shortest outgoing edges
pointing to each other, and update the value of the labels array to
be the component with the smallest index of that pair.

4 EXPERIMENTAL RESULTS

In our implementation, we used ArborX [16], an open-source li-
brary for the tree-based implementations, and Kokkos library [26]
for a device-independent programming model. The implemented
algorithm is available in the main ArborX repository3.

For our rate metric, we used the number of features processed per
second, 𝑛𝑑/𝑡 , where 𝑛 is the number of points in the dataset, 𝑑 is the
dimension, and 𝑡 is the time taken. We also denote byMFeatures/sec
the number representing millions of features processed per second.
We chose to include the dimension in our rate metric to allow
cross-dimensional comparison of the datasets.
Testing environment. The numerical studies presented in the pa-
per were performed using AMD EPYC 7763 (64 cores), Nvidia A100
and a single GCD (Graphics Compute Die) of AMD MI250X4. The
chips are based on TSMC’s N7+, N7 and N6 technology, respectively,
and can be considered to belong to the same generation.

We used GCC 11.2.0 compiler for AMD EPYC 7763, NVCC 11.5
for Nvidia A100, and ROCm 4.5 for AMD MI250X.
Datasets. For our experiments, we used a combination of artificial
and real-world datasets:

• Ngsim (2D) [1] consists of ∼12M 2D points corresponding
to car trajectories on three highways. We also use one of
these highways as a separate dataset Ngsimlocation3.

3https://github.com/arborx/ArborX
4Currently, HIP (Heterogeneous-computing Interface for Portability) – the program-
ming interface provided by AMD – only allows the use of each GCD as an independent
GPU.

https://github.com/arborx/ArborX
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Figure 5: Performance comparison of the sequential Emst implementations on AMD EPYC 7763.
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Figure 6: Performance comparison of the parallel Emst implementations using AMD EPYC 7763, Nvidia A100 and AMDMI250X

(single GCD).

• PortoTaxi (2D) [21] consists of 1,710,000+ trajectories with
∼81M 2D points in total, corresponding to the trajectories of
several hundred taxis operating in the city of Porto, Portugal.
• RoadNetwork3D (2D) [14] consists of ∼400K 2D points of
the road network of the North Jutland province in Denmark.
• GeoLife24M3D (3D) [28] consists of ∼24M 3D points corre-
sponding to a user location data (longitude, latitude, altitude),
and has a very skewed distribution.
• Hacc37M (3D) and Hacc497M (3D) consist of the 3D data
taken from a single rank of a cosmology simulation per-
formed with HACC [11]. Hacc37M was taken from a 10243
particles simulation, and has ∼37M points. Hacc497M was
taken from a 30723 particles simulations, and has ∼497M
points.
• VisualVar10M2D (2D) and VisualVar10M3D (3D) were
produced by the generator of [10]. Both datasets are of size
10M.
• Normal100M2 (2D), Normal300M2 (2D), Normal100M3

(3D), (Normal200M3 (3D) consist of randomly generated
points with zero mean and one standard deviation in all the
dimensions. The dataset sizes are 100M, 300M, 100M, 300M,
respectively.
• Uniform100M2 (2D) and Uniform100M3 (3D) are ran-
domly generated datasets where all the points are distributed
uniformly inside a unit square (cube) in 2D (3D), both cen-
tered at the origin. Both datasets are of size 100M.

Competing Algorithms: We compare the performance of our
algorithm to MLPACK [8] implementation of the dual-tree algo-
rithm [18] available at https://github.com/mlpack/mlpack, and to

MemoGFK implementation of the [27] available at https://github.
com/wangyiqiu/hdbscan.

4.1 Sequential performance

Our first goal is to compare the sequential performance of the
implementations. Figure 5 shows the results comparingMLPACK,
MemoGFK and ArborX on a variety of datasets using a single
thread on AMD EPYC 7763.

We observe thatMLPACK is slower thanMemoGFK for all the
datasets. The sequential performance of our algorithm is compet-
itive for most datasets, and is 1.5× faster than MemoGFK for the
Ngsimlocation3. The only outlier is the GeoLife24M3D. Our inves-
tigation showed that the properties of that dataset make it chal-
lenging to construct a high quality BVH. Specifically, the extremely
high density of certain regions is under-resolved by the space-filling
curve, resulting in significant bounding volume overlaps among
nodes of certain subtrees. We believe that this issue can be ad-
dressed by increasing the resolution of the Z-curve grid, e.g., by
using 128-bit Morton codes instead of 64-bit ones.

An interesting observation is that the performance of all imple-
mentations seem to be dimension-agnostic, as the rates are similar
between 2D and 3D datasets.

4.2 Parallel performance

We now compare the parallel performance of the best multi-
threaded implementationMemoGFK using AMD EPYC 7763 with
the parallel CPU and GPU implementations of ArborX run AMD

https://github.com/mlpack/mlpack
https://github.com/wangyiqiu/hdbscan
https://github.com/wangyiqiu/hdbscan
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Figure 7: Effect of the dataset size on the parallel performance using AMD EPYC 7763 and Nvidia A100.

EPYC 7763, Nvidia A100 and AMD MI250X (single GCD). The re-
sults are presented on Figure 6.

We observe that our ArborX implementation achieves 45-270
MFeatures/sec on an Nvidia A100, and is faster by 4-24× than Mem-
oGFK. The relative performance between different datasets ob-
served on AMD MI250X is qualitatively similar to observed perfor-
mance in Nvidia A100. For both AMDMI250X and Nvidia A100, we
achieve the best performance for Hacc37M , and the worst perfor-
mance for GeoLife24M3D. The ArborX on a single GCD of AMD
MI250X is faster by 2-12× than the multithreaded MemoGFK on
AMD EPYC 7763.

The good and bad cases are the similar between MemoGFK and
ArborX. Both implementations achieve the best performance on
Hacc37M , and the worst on GeoLife24M3D (see the discussion in the
previous Section). We also observe lower performance of ArborX
on the RoadNetwork3D. This is caused by the smaller size of that
dataset, which is not enough to fully saturate a GPU.

In general, there is little qualitative differences in performance
between 2D and 3D datasets. In other words, performance has little
variability with respect to the dimension of the data, but is more
dependent on the distribution of points. One exception to that are
the uniform datasets, where we see up to 20% reduced performance
for the 3D datasets with respect to the 2D dataset.

We find that our ArborX multi-threaded implementation
achieves 10-17 MFeatures/sec on AMD EPYC 7763 (with an ex-
ception of the GeoLife24M3D dataset), which puts it within fac-
tor 0.5-2× of theMemoGFK. A currently known limitation of the
multi-threaded implementation is the poor scaling of the sort algo-
rithm. The native multi-threaded Kokkos::BinSort showed very
poor performance on some of the datasets, and was replaced by an
std::sort, a serial sort from the standard C++ library. For larger
datasets, the serial nature of this sort becomes a dominant cost. We
look to replace it with a robust multi-threaded sort implementation
in the future.

We also note that we have not used any architecture-specific
optimization for any device, and that we do not attempt to study
the impact of architectural differences in ArborX performance.
Nevertheless, we would like to make a qualifying remark about
relative performance on AMDMI250X and Nvidia A100. We primar-
ily used the Nvidia A100 for algorithm and software development,
debugging and profiling. Doing so may result in performance bias

for Nvidia A100 since our algorithmic design process was guided
by performance hotspots observed on the Nvidia A100.

4.3 Scaling performance

We now explore the performance of the algorithms with respect to
the number of points in a dataset. As all algorithms are sensitive
to the distribution of points in a dataset, we try to maintain a
given distribution by randomly sampling a large dataset a specified
number of times, producing a subset with the same data distribution.

We show the results of the sampling experiment for three
datasets in Figure 7. The performance of each algorithm increases
with the number of samples until it reaches saturation. This em-
pirically demonstrates the asymptotic linear complexity of the two
algorithms. Otherwise, if the complexity was higher than linear,
our metric would decrease with increasing number of samples.

We also observe that ArborX seems to start peaking around
106 mark. In contrast, MemoGFK achieves its peak performance at
much higher number of points. This is counter intuitive, as typically
CPU algorithms reach peak performance at lower problem sizes
compared to similar GPU algorithms.

4.4 Analysis of computational phases

We show the relative cost and scaling of the different computation
phases forMemoGFK and ArborX algorithms.

MemoGFK algorithm consists of four phases: tree construction
(𝑇𝑡𝑟𝑒𝑒 ),Wspd calculation (𝑇𝑤𝑠𝑝𝑑 ), Kruskal’sMst algorithm (𝑇𝑚𝑠𝑡 ),
and auxiliary routines (𝑇𝑚𝑎𝑟𝑘 ). Figure 8a shows the breakdown
forMemoGFK. The lower portion of each bar corresponds to the
multi-threaded performance, while the full bar is the sequential
performance. The numbers indicate the ratio between the two.

We see that in the sequential case, the costliest step is the com-
putation of Wspd. However, Wspd calculation scales well with the
number of cores and achieves the best case speed-up of 57× on 64
CPU cores. On the other hand, tree construction is not a bottleneck
in the sequential case, but its poor scaling makes it the slowest
phase of the Emst computation for many datasets.

ArborX algorithm consists of only two phases: tree construction
(𝑇𝑡𝑟𝑒𝑒 ), and Borůvka’sMst algorithm (𝑇𝑚𝑠𝑡 ). Except for RoadNet-
work3D, which is of small size, both phases scale well on GPU, and
achieve the best speed-up of 360× and 350×, respectively.
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Figure 8: Breakdown of different phases of MemoGFK and ArborX
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Figure 9: Effect of 𝑘𝑝𝑡𝑠 on theMst performance using mutual reachability distance.

4.5 Mutual reachability distance

Hdbscan* [7] is a popular unsupervised clustering algorithm. Simi-
larly to Emst, it seeks to construct anMst on a complete graph of a
set of points. The main difference is that instead of using Euclidean
distance, it uses the mutual reachability distance (m.r.d.). Given two
points 𝑢 and 𝑣 , m.r.d. is defined as

𝑑𝑚𝑟𝑒𝑎𝑐ℎ (𝑢, 𝑣) = max {𝑑𝑐𝑜𝑟𝑒 (𝑢), 𝑑𝑐𝑜𝑟𝑒 (𝑣), ∥𝑢 − 𝑣 ∥2} .

Here, 𝑑𝑐𝑜𝑟𝑒 (𝑢) is the core distance, defined as the distance to the
𝑘𝑝𝑡𝑠 th nearest neighbor (including the point itself), where 𝑘𝑝𝑡𝑠 is
an input parameter to Hdbscan*. When run with 𝑘𝑝𝑡𝑠 = 1, 𝑑𝑚𝑟𝑒𝑎𝑐ℎ

is equivalent to the regular Euclidean distance.
Computing an Mst in this scenario requires two changes to

the regular Emst calculations. First, core distances have to be de-
termined prior to running an Mst algorithm. Second, an Emst
algorithm must be modified to allow for a non-Euclidean distance
metric. BothMemoGFK and ArborX (see Section 3) allow use of
the m.r.d. metric.

In this Section, we would like to explore the effect of using
m.r.d. with different values of 𝑘𝑝𝑡𝑠 on both the runtime and relative
speedup of MemoGFK and ArborX implementations. Figure 9
shows the effect of varying values of 𝑘𝑝𝑡𝑠 on the runtime of the
implementations for two datasets. 𝑇𝑐𝑜𝑟𝑒 and 𝑇𝑒𝑚𝑠𝑡 denote the time
to compute core-distances and the total time to compute Mst with
m.r.d, respectively.

We first observe that increasing values of 𝑘𝑝𝑡𝑠 results in growth
of𝑇𝑐𝑜𝑟𝑒 . This is entirely expected as more neighbors are to be found.
However, the kernel cost grows faster in the ArborX implemen-
tation on GPU compared to theMemoGFK on CPU. For example,
for the Hacc37M the speedup of ArborX over MemoGFK drops
from 20 at 𝑘𝑝𝑡𝑠 = 2 to only 12.7 at 𝑘𝑝𝑡𝑠 = 16. This is likely caused
by the cost of thread divergence when maintaining priority queues
for every thread.

The increase in𝑇𝑒𝑚𝑠𝑡 is partially caused by the increase in𝑇𝑐𝑜𝑟𝑒 .
The cost of the Borůvka iterations kernel is less clear. The difference
between m.r.d. and Euclidean distance only affects earlier Borůvka
iterations, when the distances to the closest neighbors are smaller
than their core distances. Thus, many neighbors for a given point
will all have the same m.r.d. distance to it, resulting in more expen-
sive neighbor searches. This effect disappears on the later Borůvka
iterations when the Euclidean distance dominates. We have also ob-
served that increasing 𝑘𝑝𝑡𝑠 will result in more components getting
merged on the earlier Borůvka iterations. In general, the cost of
that kernel does not increase much with 𝑘𝑝𝑡𝑠 , staying within 30%
of 𝑘𝑝𝑡𝑠 = 2.

5 CONCLUSION

Wepresented a single-tree algorithm for the Emst problem designed
to exploit the massively threaded parallelism available on GPUs.
The key strength of our approach is its simplicity through the
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use of a single-tree traversal with certain optimizations to prune
the neighbor search. We evaluated the sequential, multithreaded,
and GPU versions of our approach using a variety of datasets on
multiple hardware architectures including Nvidia and AMD GPUs.
We demonstrated that it was performance portable across these
platforms and its excellent performance on GPUs compared to
the best multi-threaded implementation. We conclude that our
approach is efficient for a low-dimensional data. It remains to be
seen if our findings hold for the data of higher dimension, which
we plan to explore in our future work.
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