
THEME ARTICLE: PERFORMANCE PORTABILITY FOR
ADVANCED ARCHITECTURES

The Kokkos EcoSystem: Comprehensive
Performance Portability for High
Performance Computing
Christian Trott , Luc Berger-Vergiat , David Poliakoff , and Sivasankaran Rajamanickam , Sandia National
Laboratories, Albuquerque, NM, 87123, USA

Damien Lebrun-Grandie, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA

Jonathan Madsen, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Nader Al Awar and Milos Gligoric, The University of Texas at Austin, Austin, TX, 78712, USA

Galen Shipman and Geoff Womeldorff, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

State-of-the-art engineering and science codes have grown in complexity
dramatically over the last two decades. Application teams have adopted more
sophisticated development strategies, leveraging third party libraries, deploying
comprehensive testing, and using advanced debugging and profiling tools. In
today’s environment of diverse hardware platforms, these applications also desire
performance portability—avoiding the need to duplicate work for various
platforms. The Kokkos EcoSystem provides that portable software stack. Based on
the Kokkos Core Programming Model, the EcoSystem provides math libraries,
interoperability capabilities with Python and Fortran, and Tools for analyzing,
debugging, and optimizing applications. In this article, we overview the
components, discuss some specific use cases, and highlight how codesigning these
components enables a more developer friendly experience.

Today’s science and engineering codes bear little
resemblance to their predecessors from 25
years ago. Back then, a couple of motivated

graduate students were able to write state-of-the-art
applications, which were comparable in capabilities to
the leading codes in their field. As an example, take
the widely used Molecular Dynamics Code LAMMPS,1

which regularly is one of the top codes used on many
HPC platforms. In 1999, it was still written in Fortran
and amounted to just 17,000 lines of code. Today,
LAMMPS tops 1,300,000 lines—a 75� increase.

A driver and enabler for such complexity increases
is the adoption of Open Source software development
approaches. It allows for a project to leverage an

amount of development resources, which used to be
available only to commercial software development. It
also enables scientists to simply extend existing code,
instead of developing something from scratch. As a
consequence, communities now often coalesce
around a few comprehensive solutions, which cover
many use cases, instead of developing a zoo of unique
applications, each supporting only a specific use case.

However, these applications face a newchallenge: the
proliferation of new High Performance Computing (HPC)
architectures. For a decade or two, most applications
used MPI for parallelism and otherwise wrote sequential
code in languages such as Fortran, C, and C++. On these
new platforms however, new paradigms need to be intro-
duced—largely to deal with on-node parallelism. Depend-
ing on the system’s vendor, that means writing
algorithms inCUDA,OpenMP, SYCL, or HIP for example.

To avoid reimplementing a code for each hardware
platform, software teams are now adopting solutions
that promise performance portability—solutions that

U.S. Government work not protected by U.S. copyright.
Digital Object Identifier 10.1109/MCSE.2021.3098509
Date of publication 2 August 2021; date of current version
23 September 2021.

Computing in Science & Engineering Published by the IEEE Computer Society September/October 202110Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on February 18,2025 at 16:38:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0003-0661-5594
https://orcid.org/0000-0001-5550-3527
https://orcid.org/0000-0001-5550-3527
https://orcid.org/0000-0001-5550-3527
https://orcid.org/0000-0001-5550-3527
https://orcid.org/0000-0001-5550-3527
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0001-9678-0766
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-5854-409X
https://orcid.org/0000-0002-7390-5834
https://orcid.org/0000-0002-7390-5834
https://orcid.org/0000-0002-7390-5834
https://orcid.org/0000-0002-7390-5834
https://orcid.org/0000-0002-7390-5834

enable developers to write code once, which then gets
mapped to each of the platforms by some portable run-
time, compiler, or abstraction layer. However, it is not
enough to just have a programming model. Complex
applications regularly use a number of fundamental
capabilities that are also provided by vendors, such as
math libraries, which often differ in API and functionality.
Special casing their use for every platform is cumber-
some and error prone, and thus should be avoided. Soft-
ware teams also need tools to debug and profile their
applications. If those tools do not understand the porta-
bility layers and cannot provide information on each tar-
geted platform, productivity suffers.

To address this predicament, the Kokkos team has
developed the Kokkos EcoSystem—a set of capabili-
ties that form the foundational layer for implementing
and maintaining complex scientific and engineering
applications. It is based on the Kokkos C++ Perfor-
mance Portability Programming Model,2 and provides
math functions, language interoperability facilities, as
well as tools integration.

In this article, we provide a short overview of the
primary capabilities in Kokkos, describe why these are
important as a foundational layer for scientific soft-
ware, and give some examples where codesigning
these efforts is critical for enabling developer
productivity.

KOKKOS ECOSYSTEMOVERVIEW
The Kokkos EcoSystema is fundamentally an abstrac-
tion layer that isolates applications from the details of
the targeted hardware architecture, as well as plat-
form-specific scientific libraries (Figure 1). The origins
of Kokkos date back to 2008, when it started as a C++
project to provide some basic linear algebra capabili-
ties that would work both on CPUs, and on the then
new GPU systems. A few years later, a second itera-
tion was started based on the insight that transpar-
ently managing data access patterns is critical for
performance portability. This led to the development
of the general programming model, which is now the
Kokkos Core Project. It is implemented as a C++
abstraction layer on top of native programming mod-
els such as OpenMP, CUDA, HIP, and SYCL. One key
aspect of Kokkos is that a strong data abstraction is
an integral part of the model. Not only does data know
where it is allocated, the abstractions also allow for
transparent memory layout changes to satisfy differ-
ent data access pattern requirements on different
hardware, without rewriting algorithms. Kokkos

Kernels was introduced on top of the Kokkos Core
programming model, reimplementing dense and
sparse linear algebra capabilities, and providing
access to vendor libraries under a common interface.
However, application developers had a hard time cor-
relating performance data collected by platform-spe-
cific tools back to the Kokkos expressions used in
their code. To remedy this productivity issue, the Kok-
kos Tools effort was conceived. It introduced a tooling
callback infrastructure in Kokkos, which tools can sub-
scribe to in order to get Kokkos-specific information.
This allows for the development of platform-agnostic
tools, and enables leveraging platform-specific instru-
mentation functionality, via thin translation layers.

Another issue of increasing urgency with the grow-
ing user base is language interoperability. Kokkos is
C++ based, but many HPC applications are written in
Fortran or want to use—at least in part—Python for
higher productivity. In order to meet application teams
where they are, the Kokkos project incorporated
efforts to interact with C++ Kokkos code from both
Fortran and Python. Recently a new contribution to
the Kokkos project is PyKokkos, which lets developers
write kernels in Python.

Originally, Kokkos was developed by a team at San-
dia National Laboratories. Today, the EcoSystem is
largely funded by the US Department of Energy Exas-
cale Computing Project (ECP). This allowed the Kok-
kos team to expand, leading to a development team
now spanning five US National Laboratories as well as
multiple non-DOE partners. This dedicated team of
two dozen developers enables the Kokkos EcoSystem
to succeed and support more than 100 application
teams relying on it for running across a variety of com-
puting architectures and achieving performance
portability.

KOKKOS CORE: PROGRAMMING
MODEL

The central piece of the Kokkos EcoSystem is its Pro-
gramming Model. The Kokkos Programming Model was
designed from the ground up with performance portabil-
ity in mind. Its primary guiding principle is to be descrip-
tive and not prescriptive. Developers express their
algorithms in terms of general parallel programming con-
cepts, instead of explicitly saying how an algorithm is
mapped to specific hardware. This gives Kokkos the free-
dom to map an algorithm to underlying hardware in
whatever theway it deems best.

For example, in Kokkos, a simple parallel loop is
expressed through the parallel_for construct. It only
asserts i) that the user wants the loop to beahttps://github.com/kokkos.

September/October 2021 Computing in Science & Engineering 11

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on February 18,2025 at 16:38:14 UTC from IEEE Xplore. Restrictions apply.

parallelized, and ii) that there are no dependencies
between the iterations.

In contrast, prescriptive programming models,
such as CUDA, explicitly map loop iterations to
threads, limiting the ability to map an algorithm to
hardware that is not a close match for this GPU cen-
tric model.

The Kokkos semantics on the other hand allow the
parallel loop to be threaded, vectorized, mapped to
GPUs, or even pipelined through data flow architectures.

Among the key insights while developing the Kok-
kos Programming Model were the six Kokkos abstrac-
tions for performance portability (see Figure 2). They
give the descriptive flexibility to express codes
detailed enough to enable effective mapping to
diverse sets of architectures.

Consider the following code snippet as an example
for how these abstractions allow portable code:

First we define what kind of execution mechanism
to use. While one could explicitly request for example
the Kokkos::Cuda execution space, in most cases it suffi-
ces to request the default execution mechanism. We
then define a 2-D array type with the Kokkos::View class,
using the preferred memory space of the chosen exe-
cution space. After that we define the type for a com-
patible array on the host. Since the function foo takes a
device input, but wants the output on the host, we first

FIGURE 1. Kokkos isolates applications, libraries, and frameworks from the details of underlying hardware. With over 100 projects

leveraging it, Kokkos is now used in the vast majority of HPC application domains.

FIGURE 2. Kokkos Core abstractions for performance

portability.

12 Computing in Science & Engineering September/October 2021

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on February 18,2025 at 16:38:14 UTC from IEEE Xplore. Restrictions apply.

create a device version of the output array. When com-
piling for pure CPU architectures, output and host_output

would alias each other, eliminating unnecessary extra
copies. Since the algorithmwould have race conditions
in the updates, we request the Atomic memory trait so
that all updates will be done by atomic operations.

Then, an execution policy is created, which uses
the execution space to tell the parallel_for execution
pattern how and where to execute. Finally, we use
deep_copy to move the data back from the device to the
host.

Other than the use of potentially separate memory
spaces, nothing in this code references, utilizes, or
expresses any assumptions about hardware proper-
ties, and yet it expresses the intent of the developer
sufficiently to allow an efficient mapping to a diverse
set of architectures.

KOKKOS KERNELS: MATH/GRAPH
LIBRARY

Dense and sparse linear algebra functions are critical
for solving many physics and engineering problems.
As a consequence, vendors provide optimized libraries
for these functions: Intel MKL, NVIDIA cuBLAS/cuS-
PARSE, AMD rocBLAS/rocSPARSE, IBM ESSL/WSMP,
and HPE/Cray LibSci. However, several performance
portability issues exist in this space. The interfaces,

supported operations, and data structures for these
libraries are not standardized. Most of the C-based
interfaces do not have the type information available
in programming models such as Kokkos. These librar-
ies are often only optimized for a single architecture,
have restrictions on scalar/ordinal types as well as
data layouts, and might not support options like mixed
precision computation.

Kokkos Kernels3 is designed to address these
issues by implementing a set of performance portable
linear algebra and graph functions using the Kokkos
Programming Model. These functions support arbi-
trary scalar types, mixed precision calculations, and
even arbitrary data layouts. The functions can deduce
a correct execution space from the call arguments,
since the Kokkos data structures are memory space
aware. View also contains all its size information, allow-
ing Kokkos Kernels to have a simpler interface than
that found in C based math libraries. For example, the
ubiquitous Basic Linear Algebra Subroutines’ GEMM
function requires 13 arguments, including 6 integral
parameters describing data layout. The corresponding
Kokkos Kernels function only requires 7 arguments.
This simplification also reduces inadvertent user
errors in the arguments.

Besides providing a generic implementation with
maximum flexibility, Kokkos Kernels can also call ven-
dor libraries when available. Figure 3 shows the perfor-
mance of a sparse matrix-vector product (SpMV)
kernel in Kokkos Kernels and vendor libraries on four
different architectures. The comparison uses two
finite element discretizations focused matricesb from
the SuiteSparse matrix collection. Note that matrices
with different structural properties will lead to varying
performance for each of the libraries. In the case of
these finite element based matrices, the performance
portable Kokkos Kernels SpMV implementation is
slightly faster than the vendor variants, for other types
of matrices it may be the other way around. Accessing
these high performance implementations with a single
function call is an effective strategy for applications
that need to run on a variety of architectures.

Kokkos Kernels also implements functionality
needed by applications that is not generally available
in vendor libraries yet. These algorithms are general
enough to be useful for more than one application,
and are key to their performance. Demonstrating the
existence and usefulness of a new function often

FIGURE 3. Performance of Kokkos Kernels native algorithms

(native) and vendor optimized libraries (MKL, ArmPL, cuS-

PARSE, and rocSPARSE) on two CPU and two GPU architec-

tures for SpMV, showing the performance portability of the

kernels across architectures.

bhttps://suitesparse-collection-website.herokuapp.com/MM/
Wissgott/parabolic_fem.tar.gz, https://suitesparse-collection-
website.herokuapp.com/MM/Botonakis/FEM_3D_thermal2.
tar.gz

September/October 2021 Computing in Science & Engineering 13

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on February 18,2025 at 16:38:14 UTC from IEEE Xplore. Restrictions apply.

https://suitesparse-collection-website.herokuapp.com/MM/Wissgott/parabolic_fem.tar.gz
https://suitesparse-collection-website.herokuapp.com/MM/Wissgott/parabolic_fem.tar.gz
https://suitesparse-collection-website.herokuapp.com/MM/Botonakis/FEM_3D_thermal2.tar.gz
https://suitesparse-collection-website.herokuapp.com/MM/Botonakis/FEM_3D_thermal2.tar.gz
https://suitesparse-collection-website.herokuapp.com/MM/Botonakis/FEM_3D_thermal2.tar.gz

leads to collaborations with the vendor math library
teams, who end up implementing architecture opti-
mized variants in their products. We eventually benefit
from such improvements by using them as third party
libraries.

Two notable examples are batched and hierarchi-
cal dense linear algebra routines. Batched dense linear
algebra can be made very efficient using an inter-
leaved layout.4 After demonstrating the performance
benefit of interleaved data layouts, we worked with
Intel and ARM who now support interleave-batch
functions in MKL and the ARMPL, respectively.

A second example for innovation driven by Kokkos
Kernels is the introduction of hierarchical linear alge-
bra kernels. Many applications use hierarchical paral-
lelism, where a subproblem is given to a team of
threads. All the primary programming models for
GPUs (CUDA, HIP, OpenMP 5.0, and OpenCL) require
such expressions when writing algorithms. Kokkos
Kernels adds a missing component in this style of pro-
gramming, allowing the call of linear algebra functions
from such a team. Existing vendor libraries mostly sup-
port only device scope functions, which cannot be
called inside a running kernel. We are working with
vendors to support these in the future.

PYTHON AND FORTRAN
INTEROPERABILITY

While the Kokkos Programming Model and Kokkos
Kernels are C++ libraries, many HPC applications are
using languages besides C++. Arguably the most
important ones are Python and Fortran. Python is a
very powerful and popular language for data analysis
and visualization, thus a rapidly growing number of
projects are adopting Python as the “driver” layer in
computational applications, where performance sensi-
tive sections are implemented in C or C++. The
machine learning frameworks PyTorch and Tensor-
Flow are examples of this model.

Fortran is one of the earliest programming lan-
guages for numerical computing and is still widely
used in HPC. To leverage new architectures however,
many Fortran applications offload computational ker-
nels to C++ dialects, such as CUDA. Furthermore,
some projects plan to move away from Fortran long
term, but have to do so in an incremental fashion.

In order to facilitate these use case scenarios, the
Kokkos Ecosystem provides language interoperability
capabilities. pyKokkos-base is the fundamental inter-
operability layer between Kokkos and Python. It pro-
vides Python bindings for some critical Kokkos
functions—such as Kokkos::initialize() and Kokkos::

finalize()—as well as bindings to Kokkos data struc-
tures, Kokkos::View and Kokkos::DynRankView, so that the
Python “driver” can pass data between the perfor-
mance sensitive sections as well as analyze and visu-
alize the data. Since many existing analysis and
visualization packages expect data in the form of a
NumPy array, the view data structures can be con-
verted to and from NumPy arrays. pyKokkos-base also
provides bindings to Kokkos Tools, which allows users
to annotate regions and assign tool callbacks to
Python-defined functions.

Similarly, the Fortran Language Compatibility
Layer (FLCL) provides Fortran bindings for Kokkos
initialize and finalize as well as facilities to allocate
Views and wrap existing Fortran arrays. In order to
deal with the limitation that C++ bindings in Fortran
are actually pure C external functions, FLCL introdu-
ces nd_array structure, which is a C representation of
a Kokkos::View.

Together pyKokkos-base and FLCL enable interop-
erability of Kokkos with Python and Fortran, in a way
such that only computational kernels that need to be
performance portable are written in C++, while the
main application remains Python or Fortran.

An additional new development is the introduction
of pyKokkos.5 This library lets developers write compu-
tational kernels directly in Python. The Python inter-
face exposes the majority of the Kokkos Programming
Model concepts and capabilities. Providing common
semantics in C++ and Python makes it easy to reason
about the code and its parallelism constraints. Kernels
written that way are automatically translated to C++
Kokkos at runtime. The Python calls to the function
are intercepted and replaced by a call to the gener-
ated Python binding for the compiled C++ Kokkos
variant.

KOKKOS TOOLS: DEBUGGING,
PROFILING, AND TUNING

Just as the variety of programming models and archi-
tectures motivated the development of Kokkos to pro-
vide a unified programming abstraction, the variety of
tools for them led to the development of a Kokkos
Tools system to unify profiling, debugging, and tuning.
In Kokkos, this is achieved with simple instrumenta-
tion of constructs in the Core model, and a shared-
library based system for loading tools. Critically, this
system introduces virtually no overhead when not in
use, and does not require recompiling an application
to switch or remove tools.

Most importantly, this enables the development of
tools that give a unified experience regardless of the

14 Computing in Science & Engineering September/October 2021

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on February 18,2025 at 16:38:14 UTC from IEEE Xplore. Restrictions apply.

architecture and backend being developed for. Appli-
cation developers can use Kokkos Tools to see where
they spend time and allocate memory, regardless of
the supercomputer they are working on, with the
exact same interface. For the average developer, this
is much more productive than learning a specific tool
supported by each hardware vendor.

At the same time, for those advanced developers
who do like the powerful platform specific tools, the
Kokkos team focuses heavily on codesign efforts with
vendors to support Kokkos Tools. For example, many
vendor tools initially displayed code performance
using the symbol names generated by a compiler. In
the case of a code written in a template C++ frame-
work like Kokkos, these names could be hundreds or
even thousands of characters long—most reflecting
implementation details of Kokkos and not user identi-
fiable names. To address this, the team works with
vendors to support the Kokkos instrumentation sys-
tem to use the labels developers provide as part of
the programming model interface.

Another advantage to this approach is that it
allows seamless profiling of large software stacks built
on top of Kokkos. Consider that the Sandia National
Laboratories SPARC application uses the Sierra frame-
work, which uses the Trilinos framework, Kokkos Ker-
nels, and the Kokkos Programming Model. Normally
all these projects would need to agree on a common
tool instrumentation layer, but thanks to the inte-
grated tools subsystem of Kokkos, that uniform instru-
mentation is already there.

The most exciting recent work in the tools subsys-
tem is extending this approach from profiling to auto-
tuning. As the architectures and backends that
Kokkos has to support proliferate, simple things like
maintaining heuristics for runtime parameters of Kok-
kos dispatches grow less tractable. The autotuning
interface is both used to tune internal Kokkos runtime
parameters, and can be called directly by user code to
tune user level parameters.

KOKKOS SUPPORT
HAVING the best solution for addressing performance
portability is not enough however, if potential users
cannot easily figure out how to use it. Recognizing this
concern, the DOE Exascale Computing Project funded
the development of training material, writing docu-
mentation and conducting training sessions. Today,
this support effort has at its heart three primary
thrusts: lectures with associated exercises covering
the capabilities of the Kokkos EcoSystem, GitHub
based Wikis with API documentation, and continuous

online support through a Slack Kokkos community.
Being developers of scientific applications ourselves,
the Kokkos team approached the support effort pri-
marily through the lens of what resources did we find
most useful when developing code.

One of the first answers to this question is tuto-
rials. The Kokkos Team developed the Kokkos Lec-
tures for that purpose. Originally taught as a two
day tutorial, these lectures now cover all aspects of
the Kokkos EcoSystem in over 15 hours of recorded
lectures that are accompanied by hands-on exer-
cises. The lectures are available on YouTube with
exercises hosted on GitHub—including reference
solutions. A content registry is located at https://
kokkos.link/the-lectures.

The next thing active users need is an API refer-
ence to look up syntax and behavior. For Kokkos,
these references are hosted in the respective GitHub
wikis for the projects and they are largely modeled
after the supremely useful C++ reference found at
https://cppreference.com.

And last but not least, all of us considered the abil-
ity to just go down the hall to ask a colleague a ques-
tion very useful. While that is not a particular support
model, we found an alternative in the messaging ser-
vice Slack. The Kokkos Slack channel (https://
kokkosteam.slack.com) currently has 600 members, a
critical mass that not only makes it worthwhile for
Kokkos team members to be constantly present to
answer questions, but also is a big enough community
that members can help each other. This capability is
now considered absolutely critical for sustaining the
community.

PERFORMANCE CONSIDERATION
Many Kokkos users have reported performance
results in the literature, and providing a comprehen-
sive review of those goes beyond the scope of this
article. However, it is well worth summarizing some
common lessons learned.

Choosing the right algorithm is the most important
factor in achieving good performance. Compared to
getting the algorithm right, the choice of programming
model is a second order concern. An additional chal-
lenge is finding an algorithm that is also performance
portable. Sometimes it is trivial given the abstractions
Kokkos provides, sometimes finding a performance
portable algorithm is difficult, and sometimes there is
no performance portable algorithm. It is important to
note that even if two specialized algorithms are
required, one does not need to leave the Kokkos pro-
gramming model. One can simply implement two

September/October 2021 Computing in Science & Engineering 15

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on February 18,2025 at 16:38:14 UTC from IEEE Xplore. Restrictions apply.

https://kokkos.link/the-lectures
https://kokkos.link/the-lectures
https://cppreference.com
https://kokkosteam.slack.com
https://kokkosteam.slack.com

different algorithms using Kokkos and choose the
right one based on the concurrency of an architecture.
This strategy still avoids introducing multiple program-
ming models. Concurrency is generally the main factor
for specialization. Some algorithms simply cannot
make effective use of 100,000 concurrent GPU
threads.

From our experience, somewhere between 50% to
80% of the parallel loops fall into the “trivially perfor-
mance portable” category. The majority of the rest,
which, unfortunately, is often responsible for most of
the computation time, falls into the difficult but possi-
ble category. Only a very small fraction of problems,
accounting for a very small fraction of code lines, can-
not be solved with a performance portable solution at
all, and one has to implement specialized algorithms.

Another observation is that porting a legacy code
to Kokkos often results in a code base that out-per-
forms the original code even on classical CPU sys-
tems. Partly that is to be expected when rewriting old
code and taking the time to improve it. But Kokkos is
also designed to provide guard rails that lead to good
coding practices. The Kokkos programming model
constrains developers in a way that is beneficial to
performance.

One example of such code is HOMMEXX,6 a climate
simulation code that is part of the E3SM Project. The
HOMMEXX team compared the performance of the
Kokkos based code with the original HOMME, and
found it to be on-par or slightly faster on CPU based
systems. They also compared single node performance
on different architectures. We can use that data to esti-
mate how efficient HOMMEXX is on each architecture.
To that end, we take the performance numbers for
1536 elements, and divide it by the peak bandwidth

(dual socket DDR bandwidth for CPU nodes, Highband-
width Memory bandwidth for a single KNL/V100) of
each node type. Though this method is a rather crude
estimate of achieved efficiency, since it neither takes
into account caching nor compute throughput, it is
likely a good first approximation for many codes. Nor-
malizing those numbers by the efficiency number of
the Haswell node results in a relative efficiency of 0.5
to 1 (see Figure 4), indicating a high level of perfor-
mance portability is achieved in practice.

RELATEDWORK
As mentioned previously, the set of capabilities pro-
vided by the Kokkos EcoSystem is also commonly
found in vendor solutions. CUDA, HIP, and OneAPI all
provide a programmingmodel, math libraries, and tools
to analyze performance. The CUDA ecosystem only
works on NVIDIA hardware. HIP does work across a
number of hardware platforms—however some of that
support is through third party efforts, and not through
the primary HIP release. While the programming model
is in principle supported on various platforms, that is
not necessarily true for themath libraries and the tools,
which by-and-large only work for AMD products. Intel’s
OneAPI also comes with a programming model (or actu-
ally two, counting both OpenMP and SYCL/DPC++),
math libraries and tools. As with HIP, the SYCL/DPC++
programming model has compilers that can target vari-
ous platforms. The OneAPI math libraries (specifically,
oneMKL) has partial support forNVIDIAGPUs in addition
to CPUs and Intel GPUs. The tool support in OneAPI is
primarily vendor specific.

OpenMP is a vendor independent programming
model, and is supported on all the platforms Kokkos
supports. It does come with a tool interface—OMPT—
similar to the Kokkos Tools interface integration. How-
ever, no specific set of math libraries is associated
with the OpenMP standard. While many common
math libraries do support OpenMP, they do so for
older OpenMP standards that only support CPU like
architectures. Thus, OpenMP based codes for the
exascale architectures need to explicitly leverage
each vendor’s math library, and support the different
interfaces provided by them.

MAINTAINING KOKKOS FOR THE
LONG HAUL

A particular concern for application teams considering
the adoption of a programming model is the question
of its longevity. While such concerns apply to all third
party software, programming models are much more
invasive into a code base—in particular programming

FIGURE 4. Efficiency on various architectures normalized by

the efficiency on Intel Haswell CPUs. The data are based on

the performance numbers reported by Bertagna et al.6

16 Computing in Science & Engineering September/October 2021

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on February 18,2025 at 16:38:14 UTC from IEEE Xplore. Restrictions apply.

models, such as Kokkos and SYCL, that also provide
fundamental data structures.

The Kokkos team is systematically executing a
strategy to alleviate these concerns: i) the Kokkos
EcoSystem is developed publicly under a permissive
licence; ii) the Kokkos team actively works on expand-
ing the developer team across institutions; iii) the
team works on integrating some of the most critical
components into the ISO C++ standard; and iv) back-
wards compatibility is paramount.

Using a permissive license is the basis for building
an Open Source community. It makes it easier for
external developers to contribute, and also opens up
the fail safe option for users to be able to take all the
source code and continue developing it on their own,
should the original Kokkos team cease to exist.

The original Kokkos team at Sandia recognized
that there is strength in numbers. Working with fund-
ing agencies, it worked to diversify the team and build
core competency at the laboratories running leading
US super computers. That effort resulted in half of
today’s contributions to the Kokkos EcoSystem being
developed outside of Sandia. Currently Kokkos is
developed by that team through an informal commu-
nity software development approach, however efforts
are underway to draft a more formal project gover-
nance processes for the post-ECP era.

In addition to the software development efforts,
the Kokkos team works on making widely used con-
cepts and capabilities from the Kokkos EcoSystem
part of the ISO C++ standard. This includes helping
to shape future heterogeneous computing support
in C++, the introduction of atomic capabilities
needed by HPC in C++20, the proposal of a multidi-
mensional array class with layouts and accessor
extensions for C++23 and the development of a lin-
ear algebra interface for the C++ standard. While
these efforts will not eliminate the need for the Kok-
kos EcoSystem, making some hard-to-optimize core
capabilities part of the standard will help lessen the
maintenance burden of the Kokkos team, and
increase the sustainability of the overall effort in the
long term.

Last but not least the Kokkos team has strict poli-
cies regarding backward compatibility. While we
expect the need to occasionally break backward com-
patibility, such changes are limited to major release
versions occurring every few years. Previews of these
changes are available long in advance, allowing code
teams to adopt changes gradually. In practice, neces-
sary changes in application codes have been minimal
or even nonexistent. In fact, tutorial examples from
2016 require only two changes—renaming dimension

to extent, and making sure that allocations are freed
before Kokkos::finalize—in order to work with the latest
Kokkos on AMD GPUs using the HIP backend, which
did not exist at the time. Notably, neither change
breaks compatibility with the Kokkos version from
2016.

Kokkos’ stated goal is to provide reliable perfor-
mance portability for all significant HPC platforms
today and in the future. By building an Open Source
community with a well-established presence across
some of the most important HPC institutions and a
strong engagement in the ISO C++ committee, the
Kokkos EcoSystem is set up to achieve that goal for
the long haul.

CONCLUSION
Performance portability is a critical need for today’s
HPC applications. But to achieve true performance
portability—in particular without loosing much pro-
ductivity—it is not enough to have a programming
model that can target diverse architectures. One
needs math libraries, tools, language interoperability,
training material and support, well integrated with the
programming model: developers need and deserve a
Performance Portable EcoSystem. Kokkos provides
such an EcoSystem through a community effort led by
a team from a diverse set of DOE laboratories. Pushed
forward by a decade of application-feedback driven
development, Kokkos is now a mature solution, which
can meet the needs of the most complex application
areas, and provide practical performance portability
today.

ACKNOWLEDGMENTS
Sandia National Laboratories is a multimission labora-
tory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-
0003525. Los Alamos National Laboratory is operated
by Triad National Security LLC for the U.S. Department
of Energy under contract 89233218CNA000001.
Approved for unlimited release LA-UR-21-25,501. This
manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US
Department of Energy (DOE).
This research was supported by the Exascale Com-

puting Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration.

September/October 2021 Computing in Science & Engineering 17

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on February 18,2025 at 16:38:14 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
1. S. Plimpton, “Fast parallel algorithms for short-range

molecular dynamics,” J. Comput. Phys., vol. 117, no. 1,

pp. 1–19, 1995, doi: 10.1006/jcph.1995.1039.

2. H. Edwards, C. Trott, and D. Sunderland, “Kokkos:

Enabling manycore performance portability through

polymorphic memory access patterns,” J. Parallel

Distrib. Comput., vol. 74, no. 12, pp. 3202–3216, 2014,

doi: 10.1016/j.jpdc.2014.07.003.

3. S. Rajamanickam et al., “Kokkos kernels: Performance

portable sparse/dense linear algebra and graph

kernels,” 2021, arXiv:2103.11991.

4. K. Kim et al., “Designing vector-friendly compact blas

and lapack kernels,” in Proc. Int. Conf. High Perform.

Comput., Netw., Storage Anal., 2017, pp. 1–12, doi:

10.1145/3126908.3126941.

5. N. A. Awar, S. Zhu, G. Biros, and M. Gligoric, “A

performance portability framework for python,” in Proc.

ACM Int. Conf. Supercomput., 2021, pp. 467–478,

doi: 10.1145/3447818.3460376.

6. L. Bertagna et al., “Hommexx 1.0: A performance-

portable atmospheric dynamical core for the energy

exascale earth system model,” Geoscientific Model

Develop., vol. 12, no. 4, pp. 1423–1441, 2019, doi: 10.5194/

gmd-12-1423-2019.

CHRISTIAN TROTT is a Principal Member of technical staff and

SandiaNational Laboratories, where he hasworked since acquir-

ing a Ph.D. degree in theoretical physics at TU Ilmenau, Germany.

He leads the Kokkos Core Project and represents Sandia on the

ISOC++Committee. Contact him at crtrott@sandia.gov.

LUC BERGER-VERGIAT is a limited term employee at Sandia

National Laboratories. He co-leads the Kokkos Kernels

projects. Contact him at lberge@sandia.gov.

DAVID POLIAKOFF has spent seven years working at various

DOE National Laboratories working on tools in multiphysics

applications. He currently leads the Kokkos Tools effort. Con-

tact him at dzpolia@sandia.gov.

SIVASANKARAN RAJAMANICKAM is a Principal Member of

technical staff at Sandia National Laboratories. He leads

Kokkos Kernels and Trilinos solver projects. Contact him at

srajama@sandia.gov.

DAMIEN LEBRUN-GRANDI�E is a Computational Scientist

with Oak Ridge National Laboratory. He co-leads the Kokkos

Core Project and represents ORNL on the ISO C++ Standards

Committee. Contact him at lebrungrandt@ornl.gov.

JONATHANMADSEN is an Application Performance Special-

ist for the National Energy Research Scientific Computing

Center, Lawrence Berkeley National Laboratory. He is a

Developer for the Kokkos Core project, leads the develop-

ment of a modular toolkit for software monitoring at LBNL

(timemory), and represents LBNL on the ISO C++ standards

committee. Contact him at jrmadsen@lbl.gov.

NADER AL AWAR is currently working toward the Ph.D.

degree with the Department of Electrical and Computer Engi-

neering, University of Texas at Austin, Austin, TX, USA. He

works onmaking HPCmore accessible from tools and produc-

tivity languages. Contact him at nader.alawar@utexas.edu.

MILOS GLIGORIC is an Assistant Professor with the Depart-

ment of Electrical and Computer Engineering, University of

Texas at Austin, Austin, TX, USA. His research interests

include software engineering and formal methods with focus

on improving software quality and developers’ productivity.

Contact him at gligoric@utexas.edu.

GALEN SHIPMAN is a Scientist with Los Alamos National

Laboratory, where he leads a next-generation programming

models integration project as part of the Exascale Computing

Project. Contact him at gshipman@lanl.gov.

GEOFF WOMELDORFF is a Scientist with Los Alamos

National Laboratory, where he develops HPC applications for

parallel architectures. Contact him at womeld@lanl.gov.

18 Computing in Science & Engineering September/October 2021

PERFORMANCE PORTABILITY FOR ADVANCED ARCHITECTURES

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on February 18,2025 at 16:38:14 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1145/3126908.3126941
http://dx.doi.org/10.1145/3447818.3460376
http://dx.doi.org/10.5194/gmd-12-1423-2019
http://dx.doi.org/10.5194/gmd-12-1423-2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

