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Searching for geometric objects that are close in space is a fundamental component of many applications. The
performance of search algorithms comes to the forefront as the size of a problem increases both in terms of
total object count as well as in the total number of search queries performed. Scientific applications requiring
modern leadership-class supercomputers also pose an additional requirement of performance portability,
i.e,, being able to efficiently utilize a variety of hardware architectures. In this article, we introduce a new
open-source C++ search library, ArborX, which we have designed for modern supercomputing architectures.
We examine scalable search algorithms with a focus on performance, including a highly efficient parallel
bounding volume hierarchy implementation, and propose a flexible interface making it easy to integrate
with existing applications. We demonstrate the performance portability of ArborX on multi-core CPUs and
GPUs and compare it to the state-of-the-art libraries such as Boost.Geometry.Index and nanoflann.
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1 INTRODUCTION

Performing proximity searches on collections of geometric objects is an inherent component of
applications in many fields. Finding the nearest neighbors of a point, or finding all objects within
a certain distance, are common tasks in shape registration methods [Besl and McKay 1992] in com-
puter vision and pattern recognition, special effects in games and movies [Karras 2012b], anomaly
detection [Breunig et al. 2000], machine learning [Pedregosa et al. 2011], cosmology [Sewell et al.
2015], data transfer in multiphysics simulations [Slattery 2016], contact detection in computational
mechanics [Feng and Owen 2002], and many others. Such algorithms involve multiple searches
through thousands or millions of objects. The performance of search algorithms is thus crucial for
the overall performance of an application. Brute force computations are prohibitively expensive
for all but the simplest applications with very few objects of interest. Instead, methods employing
tree-based data structures are preferred due to their inherent logarithmic cost.

Many libraries dedicated to geometric search algorithms have been developed. A major choice
in developing such a library is the underlying tree data structure. This choice dictates both the
complexity of implementation and the resulting performance, including the tradeoff between the
time to construct the data structure and the time to perform search queries. A data structure that
is fast in performing the search may require a longer time setting up, and vice versa. The way it
is used in each application dictates the desired tradeoff. Two tree structures, k-d and R-tree, are
particularly suitable for geometry-based search, and are commonly implemented in libraries.

k-d tree [Bentley 1975] is a binary space partitioning data structure. The construction algorithm
chooses a suitable hyperplane to split a given set of points into two, and continues recursively for
each subset, deciding on a new hyperplane each time. The internal nodes of the tree correspond to
such hyperplanes, with the parent-child relationship formed through a single recursive iteration.
The hyperplane orientations are typically switched at each level so as not to produce very skewed
sets, with cyclic rotation amongst dimensions being the simplest approach. Once the algorithm
terminates, the leaf nodes contain the original set of points. Variants of the k-d tree are widely
used in libraries, e.g., FLANN [Muja and Lowe 2009] and nanoflann [Blanco and Rai 2014].

The R-tree [Guttman 1984] is an alternative data structure used for spatial search. The leaf
nodes of an R-tree are multidimensional rectangles bounding the objects of interest, and higher
level nodes of a tree are aggregations of an increasing number of objects. This is the data structure
that was chosen in the Boost.Geometry.Index [Gehrels et al. 2017] library.

Both nanoflann and Boost.Geometry.Index libraries are widely used in applications. Both, how-
ever, are less suitable for high-performance computing (HPC) applications as they do not take
advantage of multi-threading, nor do they consider the variety of different architectures available
today. Current HPC trends require search algorithms to perform well on a variety of hardware
architectures, including GPUs and other accelerators provided by a variety of vendors. This is
particularly true within the Exascale Computing Project of the U.S. Department of Energy [DOE
2016] where significant resources are devoted to porting applications to utilize both CPUs and
GPUs, and preparing for upcoming new architectures such as APU and FPGA. Given the variety
of the current hardware landscape and some uncertainty in future hardware directions, a search
library that is developed from scratch should be performance portable.

With this goal in mind, we introduce a new open-source library ArborX.! Itis a header-only C++
library with a focus on performance portability for both current and known future leadership-class
supercomputers. The implemented algorithms were carefully chosen to be efficient on the multiple
architectures, and rely on the C++ Kokkos [Edwards et al. 2014] library to provide performance

1 ArborX is available at https://github.com/arborx/ArborX.
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portability. We focus on low order dimensional space, building the data structures from scratch
(i.e., no incremental updates).

The article is organized as follows. In Section 2, we describe the algorithms that are used in
ArborX. In Section 3, we compare our library to other state-of-the-art libraries and demonstrate
its performance on different architectures. Finally, we present our conclusions in Section 4.

2 SEARCH ALGORITHM

Search algorithms are memory bound by nature. The fundamental parts of any good search algo-
rithm include visiting as few tree nodes of the search tree as possible, reducing the amount of mem-
ory required by each tree node, and using inexpensive computations to construct and query the
tree data structure. Furthermore, reducing thread execution divergence (executing different code)
and data divergence (reading or writing disparate locations in memory) is highly desirable in par-
allel implementations, particularly for accelerators with thousands of threads (such as GPUs) and
architectures that improve performance via vectorization (e.g., modern CPUs). Below we present
a bounding volume hierarchy (BVH) tree data structure that was carefully chosen to satisfy all of
these requirements on modern architectures.

A BVH is a tree structure created from a set of geometric objects in a multi-dimensional space.
The objects are wrapped in simple geometric form (bounding volumes) that form leaf nodes of the
tree. Similarly to the R-tree, each node of a BVH is an aggregate of its children, enclosing the group
within a larger bounding volume. The root node of the hierarchy corresponds to the bounding
volume around all objects (called scene bounding volume). Binary BVH is by far the most popular
choice and is what we have chosen for our implementation in this work. For multithreaded and
GPU implementations the binary BVH has the convenient property that the number of internal
nodes in the tree is equal to the number of leaf nodes decreased by one that allows for static
memory allocations once the input geometry is known.

The choice of the geometry of a bounding volume is crucial for performance. Bounding volumes
should require little data to store, be fast to test for intersection, have fast distance computations,
and fit closely to the underlying object (to avoid unnecessary traversal). In practice, axis-aligned
bounding boxes (AABB), which are boxes aligned with axes of the coordinate system, are often a
good choice [Haverkort 2004]. They require minimal space to store (two opposite corner points
or six floating point numbers in three dimensions (3D)) and are fast to test for intersections. Com-
puting the distance from a point to an AABB is also inexpensive. This often outweighs the main
drawback of AABB of not fitting tightly to the underlying data in some situations. Figure 1 demon-
strates an example of a BVH tree formed for a set of eight geometric objects represented by human
figures. The red bounding volumes correspond to leaf nodes (nodes 0-7) and tightly surround the
objects themselves. They are then combined to form larger bounding volumes corresponding to
internal nodes (nodes 8-14), culminating with the root node bounding volume surrounding the
whole scene. The corresponding BVH tree is shown in Figure 1(b).

The idea of parallelization of BVH construction by using a space-filling curve (called linear BVH)
was proposed in Lauterbach et al. [2009]. In that approach, the leaves of a tree are ordered based
on a space-filling Z-curve using Morton codes. The algorithm was improved in Pantaleoni and
Luebke [2010] and Garanzha et al. [2011] by allowing processing each level in parallel. In Karras
[2012a], a new approach allowing all internal nodes to be constructed concurrently was introduced.
In Apetrei [2014], the algorithm was further improved by merging hierarchy construction with
bounding volume computations in a single bottom-up pass.

The question of the quality of the constructed hierarchy often arises in applications. For ray
tracing applications, there is a rich literature devoted to the question (see, for example, Domingues
and Pedrini [2015] and the references within). Typically, the goal is to minimize the surface area
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Fig. 1. Bounding volumes and corresponding BVH tree for a set of eight geometric objects represented by
human figures.

heuristic (SAH), which is often achieved through rearranging subtrees. It is possible that many
of the techniques could be applicable to scientific applications once a suitable heuristic is deter-
mined. Other approaches may warrant examination. In Vinkler et al. [2017], the authors propose
extending Morton codes to incorporate additional geometric information, such as object size, lead-
ing to higher quality BVH. Uneven primitive distribution is addressed in Hu et al. [2019] through
computation of a local density information to inform the BVH construction.

Another active area of research is reducing the amount of bandwidth used by BVH. Howard
et al. [2019] replaces single precision floating points used to store a bounding volume with
two 32-bit integers containing quantized bounds. Benthin et al. [2018] reduces the depth of the
hierarchy through compressing leaf nodes into wide multi-nodes.

The focus of this work has so far been on the speed and portability of the library, rather than the
quality of the constructed hierarchy. In scientific applications, it is typical that the tree is rebuilt
multiple times (e.g., for each timestep of a time-dependent application), placing lower importance
on the quality. We chose Karras [2012a] for our initial implementation due to its simplicity. Ad-
dressing the quality is deferred to the future work.

We provide an overview of the core algorithms for the construction of such tree in Section 2.1.
The corresponding traversal algorithms are detailed in Section 2.2. Finally, in Section 2.3, we dis-
cuss a user interface to allow flexibility in interaction with user data.

2.1 BVH Construction

In this section, we describe the construction of the linear BVH used to accelerate the search for
a given set of geometric objects. The degree of parallelism in BVH trees is severely limited in a
typical bottom-up construction (i.e., constructing a node only after its children). On the other hand,
the linearity imposed by a Z-curve implicitly partitions the objects based on the highest differing
bit of their Morton codes, allowing for a top-down approach. A clever numbering of internal nodes
as described in Karras [2012a] then allows for a fully parallel algorithm. We implement the original
algorithm with only minor changes (such as removing parent pointers from tree nodes, and storing
the leaf node permutation index in a leaf), with an intent to incorporate [Apetrei 2014] in the near
future. A brief description of the involved steps is provided below.

Construct AABBs. As in any BVH algorithm, the first step is to compute the bounding boxes
of the user provided objects. The only requirement on the objects is that they are boundable. For
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certain classes of objects, such as polyhedrons, this step is inexpensive. The computed boxes may
be degenerate, such as those produced for points or objects of a dimension lower than that of
AABBs, giving one or more dimensions with an extent of zero.

Calculate the scene bounding box. The scene bounding box is an AABB that contains the bound-
ing boxes of all objects. It is easily computed by a reduction of the corners of the bounding boxes.

Assign Morton codes for each AABB. Morton codes, or Z-order codes, are used to map multidi-
mensional data to a single dimension, while preserving the spatial locality of the data. Given a
point, a Morton code can be efficiently computed by interleaving bits of the point coordinates.
The Morton code of a bounding box is computed as the Morton code of its centroid scaled using
the scene bounding box. This guarantees that all coordinates lie within [0, 1]* cube. In general,
Morton codes are not guaranteed to be unique. Thus, if multiple objects share the same Morton
code, they are augmented with an index to differentiate them.

Sort the bounding boxes using their Morton code. The bounding boxes may now serve as leaf
nodes. The goal of this procedure is to decrease the size and the overlap of bounding boxes of
internal nodes that will be generated.

Generate the bounding volume hierarchy. With a linear order imposed by sorted Morton codes,
construction of a hierarchy can be seen as a recursive partitioning of the range of Morton indices
so that each internal node in a tree corresponds to an interval of Morton codes. The recursion
terminates when a range contains only one item, which is to be a leaf node. The described parti-
tioning is based on selecting a position called split to cut a given range in two. The splits are based
on the highest differing bits of Morton codes within a given range. The range of each internal
node is computed independently, allowing a parent node to determine its children and record the
parent-child relationships without waiting for the construction of other nodes. A more detailed
discussion can be found in Karras [2012a]. The permutation indices computed in the previous step
are stored in the leaf nodes.

Calculate internal nodes bounding boxes. The final step is to compute the bounding boxes of
internal nodes by traversing the tree bottom-up. In parallel, each thread is assigned a leaf node and
traverses towards the tree root. Upon encountering an internal node, only one of the children’s
threads is allowed to proceed further. As parent pointers are not used in hierarchy traversal, we
avoid storing the pointer to the parent node inside a child node to minimize used memory. Instead,
the parent pointers are kept in an auxiliary array that is dismissed after construction.

2.2 BVH Traversal

Once constructed, the tree data structure may be used as many times as needed to complete the
search process. Each query of the data structure results in a traversal of the tree where the approx-
imation of objects by AABBs allows for a preliminary coarse search that is responsible for listing
all boxes with potential collisions. It is then followed by a fine search where a user-specified search
criteria is used to trim the results. The tighter the bounding volumes are to the real objects, the
more accurate the results of the coarse search are, and the fewer expensive fine search queries that
are needed.

We distinguish two kinds of (search) queries: spatial and nearest. A spatial query searches for all
objects within a certain distance of an object of interest. A nearest query, on the other hand, looks
for a certain number of the closest objects regardless of their distance from an object of interest.
These two query kinds require fundamentally different tree traversal algorithms. The spatial query
has to necessarily explore all nodes in a tree that satisfy a given distance-based predicate. The
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nearest query, however, can terminate early when it can be guaranteed that the already found
candidates are the best possible ones.

It is very common to execute multiple search queries simultaneously. In parallel, the threads
are executed in batched mode, with each thread assigned a range of search queries (on CPU) or
a single search query (on GPU). While it may be possible to further improve the performance by
having multiple threads work on the same query, we do not address this in the current ArborX
implementation, and each query is performed exclusively by a single thread.

As threads traverse the tree, the attention to execution and data divergence is paramount for
performance. We next describe our strategies for traversal with each query type.

2.2.1 Traversal for Spatial Queries. In spatial query traversal, each node can be tested indepen-
dently for predicate satisfaction. A simple distance-based predicate tests for whether a distance
from a bounding volume to a point is less than a given radius.

Spatial traversal is executed top-down, starting from the root node. A naive recursive implemen-
tation may lead to a high execution divergence as shown in Karras [2012c]. Instead, an iterative
traversal is preferred, using a stack to keep track of nodes to visit. In the beginning of the traversal
the root node is added to the stack. The algorithm proceeds by popping a node from the stack,
and testing its children for predicate satisfaction, upon which they are either added to the stack
(internal nodes) or to the output (leaf nodes). The algorithm terminates upon an empty stack.

An important issue associated with spatial traversals is that the number of found objects is
not known a priori. This issue is typically not addressed in computer graphics applications as the
results are processed on the fly in many cases. However, storing the results plays an important
role in scientific applications, where further processing of the results is required (e.g., halo finding
algorithm [Sewell et al. 2015] calculates clusters based on the computed data). It is well known
that dynamic memory allocation is inefficient in multithreading, and is problematic on GPUs. This
can be avoided by using a count-and-fill technique, i.e., by doing two passes (2P). The first pass
just counts the number of found objects. Then, the required storage is allocated, and the process
is repeated in the second pass, this time storing the results.

The 2P approach, while robust, comes with a drawback of having to traverse the hierarchy twice.
A superior alternative, when possible, is to only do the second pass once the preallocated memory
is exceeded. In this approach (called 1P), an estimate for a maximum number of found objects per
query is provided by a user. During the first pass, the found objects are both counted and stored. If
the storage is exceeded, then the algorithm falls back to the 2P approach. If the estimate is correct,
i.e., is an upper bound, then only a single pass is done, improving the overall performance. That
single pass is then followed by “compacting” the results due to excess allocation. Such a technique
is typically less costly than performing the traversal twice.

2.2.2  Traversal for Nearest Queries. Nearest traversal proceeds in top-down fashion, similarly
to spatial-based traversal. However, in this case, the number of found neighbors (or, rather, its
upper bound) is known in advance, and thus allows for the preallocation of memory and to avoid
the second pass through the tree.

A typical implementation of nearest traversal uses a priority queue based on distances, using
the closest node in each iteration. An alternative and better performing approach, first derived for
k-d trees in Patwary et al. [2016], is to use a stack. As stack is a Last-In-First-Out data structure, it
is possible to get a behavior similar to the one of a priority queue by adding a child with a shorter
distance second (so that it sits on top of the stack). The algorithm terminates when the remaining
candidates in the stack are guaranteed to result in worse results, or the stack is empty. The final
(optional) step is to clean the results by purging missing data (if, for example, the number of found
objects is less than specified).
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Fig. 2. Effect of query ordering on nearest traversal.

2.2.3 Query Ordering. Both execution and data divergence depend heavily on whether the
nearby computational threads traverse the tree similarly. Sorting the queries may have a signifi-
cant impact on the overall performance as was noted in Karras [2012c]. One way to accomplish
this is by making sure that the search queries for nearby threads are “close” to each other, i.e., the
corresponding tree traversals would be very similar in both nodes they visit and the order they
visit them. This can be achieved by computing Morton codes for query objects and then using
them for pre-sorting.

To illustrate this phenomenon, consider the nearest traversal of a point cloud of 418 points
(representing a leaf) shown in Figure 2(a). Figure 2(b) represents a binary matrix of size 418 X
418 corresponding to the original ordering of search queries. Each row represents a search query
assigned to a single thread, and each column corresponds to an internal node in the tree. A value in
the matrix is nonzero (black) when a thread accesses a bounding box of a corresponding node. As
one can see, using the original ordering of search queries results in little correlation of accessed
nodes of two nearby threads. The performance suffers in this case due to poor memory access
pattern. Figure 2(c), however, corresponds to the queries reordered based on their Morton codes. It
is clear that the nearby threads now share many nodes of the tree in their traversal. The apparent
hierarchical pattern of the matrix indicates the concentration of queries in certain subtrees before
switching to sibling trees.

2.3 Library Interface

ArborX implements a performance portable interface through the use of Kokkos [Edwards et al.
2014], a C++ library providing a uniform programming interface for various backends, such as
OpenMP or CUDA. Using Kokkos allows for running the same code on CPUs or GPUs by simply
changing the backend through a template parameter.

The construction procedure begins with a set of bounding boxes, provided by a user as a
Kokkos: :View, a Kokkos data structure corresponding to a multi-dimensional array. At a high
level, Kokkos: :View<T#*, DeviceType> can be thought of as an array containing objects of type
T. The DeviceType template argument indicates both the memory in which the data reside (e.g.,
host or device memory) and the place to execute the code (e.g., CPU or GPU). Once bounding
boxes are constructed, they are passed to the constructor of BVH, the ArborX class containing the
hierarchy (see Figure 3).

Next, the queries are built. Each query corresponds to a pair of a query point and a number
of neighbors to be found (nearest query), or a pair of a query point and a radius (spatial query).
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// Create the View for the bounding boxes
Kokkos: : View<ArborX: :Box*, DeviceType> bounding_boxes("bounding_boxes", n_boxes);
// Fill in the bounding boxes Kokkos::View

// Create the bounding volume hierarchy
ArborX: :BVH<DeviceType> bvh(bounding_boxes);

Fig. 3. BVH construction interface.

// Create the View for the spatial-based queries
Kokkos: :View<ArborX::Within *, DeviceType> queries("queries", n_queries);
// Fill in the queries
using ExecutionSpace = typename DeviceType::execution_space;
Kokkos: :parallel_for("setup_queries",
Kokkos: :RangePolicy<ExecutionSpace>(@, n_queries), KOKKOS_LAMBDA(int i) {
queries(i) = ArborX::within(query_points(i), radius);
DH
// Perform the search
Kokkos: :View<intx, DeviceType> offsets("offset", 0);
Kokkos: :View<intx, DeviceType> indices("indices", 0);
bvh.query(queries, indices, offsets, buffer_size);

Fig. 4. BVH search interface (spatial queries).

The spatial-based version is shown in Figure 4, with queries being filled in a device parallel loop.
Once the queries are constructed, two views are allocated to store the results: the indices view to
contain the indices associated with the bounding boxes that satisfy the queries and the offsets
view to contain the offsets in indices associated with each query. Two views are necessary as the
number of results for each query may differ (for example, the number of results within specific
radius for spatial-based search).? The search is done by invoking the query function of BVH. The
additional parameter buffer_size is optional, and only used for spatial-based queries. It indicates
the user-provided estimate for the number of returned results, and if accurate, allows to do a single
pass (1P).

3 NUMERICAL RESULTS

The numerical studies presented in the article were performed on two systems:

e CADES system with each node containing two Intel Xeon E5-2695 v4 18-core CPUs running
at a clock speed of 2.1 GHz with 256 GB of main memory;

e OLCF Summit system with each node having two IBM POWER9 AC922 21-core CPUs, each
having 4 hardware threads with 6 Nvidia Volta V100 GPUs connected by NVLink 2.0 [OLCF
2018].

We used the Google Benchmark tool [Google 2018] in our experiments, using the median of the
runs for the results we have reported here.

In the results that follow, the spatial search performed using 2P approach is denoted by “ArborX
(2P).”

2This format is similar to that of compressed sparse row format that is commonly used to store sparse matrices.
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3.1 Experimental Datasets

In our experiments, we use several artificial datasets proposed in Elseberg et al. [2012]. We consider
two shape forms, cube and sphere. For a given shape, a set of points is then chosen either from
within the selected shape (filled variant), or from its boundary (hollow variant). To generate p
points, set a = p'/3, Q = [~a, a]® and proceed as follows:

e filled cube: Each random point is drawn randomly from Q with uniform distribution;

e hollow cube: Points are placed on the faces of Q in a cyclic manner, with the position of the
point on each face being random with uniform distribution;

o filled sphere: Points are randomly chosen from Q and accepted based on being within a
sphere of radius a centered at 0;

e hollow sphere: Points are first generated within [—1,1]® cube and then projected to the
sphere of radius a centered at 0.

In our experiments, we consider two cases: searching for a filled sphere cloud of query points in
the filled cube cloud (filled case), and searching for a hollow sphere cloud in the hollow cube cloud
(hollow case). The major difference between these two cases is the workload per thread. For the
filled case, the data and the query results are balanced between threads. The hollow case, however,
presents a challenge due to a wide imbalance of query results, as only a few threads will produce
positive results for a spatial search.

For a given problem, m source points and n target points are generated using one of the described
four shapes. The number of neighbors k for the nearest search is fixed to 10 in all experiments. The
radius 7 for spatial search is chosen in such a way that on average there are k neighbors within
radius r in a filled cube shape.

3.2 Comparison with Available Libraries

In this section, we compare the performance of ArborX with that of two state-of-the-art existing
libraries, Boost.Geometry.Index and nanoflann.

The Boost.Geometry.Index [Gehrels et al. 2017] library implements different algorithms for R-
trees. For the purpose of performance comparison, we used the packing algorithm [Garcia et al.
1998; Leutenegger and Edgington 1997], which is the most performant algorithm contained in
Boost.Geometry.Index. The performance comes at the cost of flexibility, since the tree has to be
built statically. We used version 1.67.0 of the library.

nanoflann [Blanco and Rai 2014] is a header-only library for building k-d trees. We used
nanoflann hash 3b2065e.

As Boost.Geometry.Index and nanoflann are implemented only in serial,® the comparisons in
this subsection were done using one thread. The scaling of ArborX with the number of OpenMP
threads is demonstrated in the next section.

The experiments were performed on the CADES system. They were run for the increasing num-
ber of source points m, ranging from 10* to 10”. The number of the target points n was chosen to be
the same as the number of source points, n = m. Such configuration is common in many applica-
tions, e.g., finding potentially colliding pairs of objects in graphics applications, or finding nearby
particles for pairwise interactions in physics simulations.

Figures 5 and 6 demonstrate the relative speedup or slowdown of the libraries relative to
nanoflann. Figure 5(a) (Figure 6(a)) shows tree construction speedup for the filled (hollow) case,
respectively. We observe that ArborX and Boost.Geometry.Index libraries perform similarly, while

3 As Boost.Geometry.Index is thread safe, it is theoretically possible to run it in batched mode. However, this will require a
user to write the necessary parallel implementation.
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Fig. 5. Comparison of libraries for the filled case. The speedup is shown with respect to nanoflann.
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Fig. 6. Comparison of libraries for the hollow case. The speedup is shown with respect to nanoflann.

nanoflann starts to lose its competitiveness for large number of objects. Comparing the query per-
formance of the libraries, we observe that for the nearest search (Figures 5(b) and 6(b)), ArborX
significantly outperforms both Boost.Geometry.Index and nanoflann libraries for larger numbers
of objects, particularly for the hollow case. For the spatial search, the performance of the 1P variant
is about twice faster than that of the 2P variant in the filled case (Figure 5(c)), where workloads
are balanced. However, for a larger number of objects (larger than 10°) in the hollow case, the
1P variant could not be run due to requiring too much memory to preallocate the storage for the
results based on the maximum estimate. Therefore, no results from the 1P variant are given for
these larger cases in Figure 6(c).

Figure 7(a) (Figure 7(b)) demonstrates the rate of spatial-based search for a filled (hollow) case,
respectively. The main difference between the filled and hollow variants is the number of results
returned by queries. Specifically, for the spatial-based search, the filled variant returns 10 neighbors
on average (with the minimum being 0 and the maximum being 32). However, for the hollow
variant the number of neighbors is much more imbalanced, ranging from 0 to 522, with the average
being 2. This is due to (a) the fact that the hollow sphere touches the hollow cube in just a few places
(centers of the faces), and (b) both being two-dimensional objects thus having a significantly higher
density than in 3D for the same number of points. As expected, the rate for the hollow variant is
significantly higher than that of the filled variant due to most queries returning empty result.

An acute observer may notice that there is little difference between 1P and 2P variants for the
hollow case for large number of objects. It turns out that the extra memory required to store all
the results of the first pass becomes a drawback at some point, with filtering out unused entries
taking a significant portion of time. Another interesting observation is the drop of the rate for 2P
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Fig. 9. ArborX scaling for the hollow case.

spatial search for the hollow case going from 10° to 107. Examination revealed that for the latter
problem sorting queries is less effective than retaining their original order. Sorting the queries in
serial may not be necessary, and ArborX provides an option to disable that.

3.3 Multi-threaded Strong Scaling

We next examine the scalability of ArborX using OpenMP on the CADES system.

For the strong scaling, the number of source points m is fixed to a value from 10* to 107, and the
number of OpenMP threads increased from 1 to 16. The number of target points n was chosen to
be the same as the number of source points, n = m.
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Table 1. ArborX Scaling Results for the Filled Case for n = 10* and n = 107

Construction Spatial search Nearest search
Threads T T - 1 .
n=10 n=10 n=10 n=10 n=10 n=10

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.90 1.62 1.83 1.87 1.71 1.84

4 1.48 3.21 3.42 3.69 3.18 3.62

8 2.18 5.82 5.93 6.64 5.55 6.44

16 3.01 10.50 9.74 12.24 9.31 12.06

Table 2. ArborX Scaling Results for the Hollow Case for n = 10* and n = 107

Threads Construction Spatial search Nearest search
n=10" n=10" n=10" n=10" n=10" n=10

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.94 1.46 1.49 1.57 1.71 1.87

4 1.48 2.87 2.62 3.05 3.14 3.62

8 2.19 5.05 4.11 5.39 5.59 6.44

16 2.99 8.61 5.64 11.20 8.52 9.84

The results are presented in Figures 8 and 9 and Tables 1 and 2 (the spatial search is performed
using the 2P approach). ArborX demonstrates good scalability for a large number of objects.
However, having too few objects per thread for smaller simulations results in suboptimal scaling,.
Upon further inspection, the sorting routine used for sorting Morton indices was identified to
be the limiting factor, having poor scalability in cases where every thread has fewer than 1000
objects. We attempted to use few available parallel sort algorithms (e.g., __gnu_parallel::sort)
instead of the default Kokkos sort. However, we found this led to only a minor improvement in our
performance results. This issue affects both construction (sorting of Morton codes, see Section 2.1),
and search (sorting of queries, see Section 2.2.3) and will be a topic of future work.

3.4 Accelerator Comparison

We now compare the performance of ArborX using OpenMP and CUDA on the OLCF Summit
system. We compare the performance of the two POWER9 CPUs on a single Summit node (42
physical cores) with that of a single Volta V100 GPU.* POWERY’s physical cores consist of four
“slices” that can be used in a variety of configurations. In sm#4 mode, each slice operates indepen-
dently of the other three, allowing for separate streams of execution for multiple OpenMP threads
on each physical core. In smt2 mode, pairs of slices work together to run tasks. Finally, in smt1
mode the four slices work together to execute the task/thread assigned to the physical core.

The results are presented in Figures 10 and 11 (the spatial search is performed using the 2P
approach). We observe that executing in smt4 mode usually leads to better performance (especially,
for larger problem sizes), though that is not always the case. We also note that a single Summit GPU
significantly exceeds the performance of the full node of CPUs, exhibiting shortcomings only for
smaller problems that are less suitable for the high parallelism provided by the accelerator. As each
node of Summit has six GPUs connected by NVLink, it is expected that using only accelerators

4Currently, Kokkos (and thus ArborX) does not support multiple GPUs within the same process. The six V100 GPUs on a
Summit node are typically used by having a single MPI rank manage a single dedicated GPU.
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Fig. 10. Comparison of OpenMP and CUDA on Summit for filled cube source and filled sphere target clouds.
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Fig. 11. Comparison of OpenMP and CUDA on Summit for hollow cube source and hollow sphere target
clouds.

would dramatically outperform using only CPUs when using an MPI+Kokkos approach in the
future.

We also concede that another way to compare the performance would have been to normalize
the data by the power drawn by the corresponding hardware. Unfortunately, we were not able to
obtain such data as it is not yet provided by the facility or the performance monitoring software.
While the published specifications of V100 and POWER9 do have some information, including
thermal design power, those were observed to be inaccurate in practice by others, and thus were
not relied on in our reporting.

4 CONCLUSION AND OUTLOOK

In this article, we presented a new library ArborX for searching close geometric objects in space.
ArborX’s strength lies in its performance and its ability to be run on multiple hardware architec-
tures using a single interface definition. Experiments were conducted to compare its performance
with existing popular libraries, such as nanoflann and Boost.Geometry.Index, and to demonstrate
its scalability and performance on accelerators. Our results show that our implementation is com-
petitive with these libraries in single thread execution and is also able to effectively leverage both
the multithreaded CPU and GPU compute power on modern leadership-class supercomputers such
as Summit.

There are two natural directions for future work. One is addressing the current scalability lim-
itations through careful analysis and profiling of the library. The second is implementing the dis-
tributed search algorithms using MPI to address the requirements of exascale applications where
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the objects indexed by the tree as well as the query objects are distributed across many MPI ranks.
This creates additional challenges to those presented in this article as it is likely that the data
that one searches for may not belong to the same node, or that the data distribution among MPI
ranks may be imbalanced. Thus, a communication layer deploying a load balancing strategy will
be required to be effectively scale to thousands of accelerated compute nodes.
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