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ABSTRACT

This paper introduces Pandora, a parallel algorithm for comput-
ing dendrograms, the hierarchical cluster trees for single linkage
clustering (SLC). Current parallel approaches construct dendro-
grams by partitioning a minimum spanning tree and removing
edges. However, they struggle with skewed, hard-to-parallelize
real-world dendrograms. Consequently, computing dendrograms is
the sequential bottleneck in HDBSCAN*[21], a popular SLC variant.

Pandora uses recursive tree contraction to address this limitation.
Pandora contracts nodes to construct progressively smaller trees.
It computes the smallest contracted dendrogram and expands it by
inserting contracted edges. This recursive strategy is highly parallel,
skew-independent, work-optimal, and well-suited for GPUs and
multicores.

We develop a performance portable implementation of Pandora
in Kokkos[31] and evaluate its performance on multicore CPUs
and multi-vendor GPUs (e.g., Nvidia, AMD) for dendrogram con-
struction in HDBSCAN™. Multithreaded Pandora is 2.2x faster than
the current best-multithreaded implementation. Our GPU version
achieves 6-20x speedup on AMD GPUs and 10-37x on NVIDIA
GPUs over multithreaded Pandora. Pandora removes HDBSCAN™’s
sequential bottleneck, greatly boosting efficiency, particularly with
GPUs.
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Figure 1: Overview of proposed algorithm and results. Fig. 1a
illustrates the PANDORA algorithm using recursive tree con-
traction. The top left shows the original minimum spanning
tree (MST); the bottom left shows the contracted MST. The
dendrogram corresponding to the contraction is presented
in the bottom right. Reinserting the contracted edges recon-
structs the complete dendrogram. Note: The dendrogram
only shows internal nodes corresponding to MST edges; leaf
nodes for data points are omitted. Fig. 1b shows time taken by
HpBscaAN® components construction (Euclidean minimum
spanning tree (MST) and dendrogram) on AMD EPYC 7A53
CPU and AMD MI250X GPU for Hacc37M dataset.

1 INTRODUCTION

Single-Linkage Clustering (SLC), a widely used hierarchical method,
is applied in diverse fields such as bioinformatics [28], astron-
omy [9], and image analysis [6, 14, 29, 34]. SLC computation typi-
cally involves constructing a minimum spanning tree (MST) and
computing a dendrogram to represent hierarchical clusters from
the MST. MST computation may differ between SLC variants and
data types ( graphs, spatial points, or images); dendrogram compu-
tation is common among all variants. This paper focuses on parallel
dendrogram computation arising from SLC computations.
Computing the dendrogram is especially challenging in the pop-
ular SLC variant, Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HpBscaN™) [7]. HDBscAN™ hierarchically
clusters spatial data by: 1. building a Euclidean minimum spanning
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tree (EMST) using the mutual reachability distance and 2. convert-
ing the EMST into a dendrogram [7]. Although parallel EMST
construction is well-studied [25, 33], efficient parallel dendrogram
computation remains challenging. Sequential or coarsely multi-
threaded dendrogram construction often dominates runtime (some-
times exceeding 90% [33]), limiting HDBSCAN™ performance on large
spatial data. For example, Figure 1b (middle) shows that for the
Hacc37M astronomy dataset, dendrogram construction on CPU con-
sumes 86% of the overall time compared to MST construction on
GPU. We introduce a novel parallel GPU algorithm for dendrogram
construction to address this bottleneck.

Given the MST, there are two approaches to compute the den-
drogram: 1. Top-down [7, 33]: The top-down method repeatedly
removes edges from the MST, splitting it into smaller subtrees repre-
senting clusters, until all edges are removed. However, it performs
poorly on highly skewed dendrograms with heights exceeding
O(logn), where n is the number of points. Such skewed dendro-
grams limit parallelism, resulting in quadratic work complexity
and slow performance [33]. 2. Bottom-up: The bottom-up approach
starts with the smallest MST edge and iteratively adds edges to
expand the cluster until all points are included. This approach is
asymptotically work-optimal regardless of dendrogram skewness
(Figure 1b, middle uses the bottom-up approach). However, it re-
quires sequential edge addition for correctness, making it highly
sequential. The bottom-up approach is currently the fastest method,
but developing an asymptotically work-optimal parallel algorithm
for dendrogram construction remains an open challenge.

We introduce PANDORA, a novel parallel algorithm for construct-
ing dendrograms. PANDORA uses parallel-tree contraction to con-
tract edges in the minimum spanning tree (MST), producing a re-
duced MST. We efficiently compute the dendrogram for the reduced
MST and reintegrate the contracted edges. We recursively apply
this process to construct the complete dendrogram asymptotically
optimally. Figure 1a illustrates PANDORA using an MST with one
level of contraction.

To implement this strategy, we must solve two problems: 1. Iden-
tifying contractible edges. We aim to contract the maximum edges,
but not all contractions are valid. We have characterized valid edge
contractions and identified the maximal set that ensures the cor-
rectness of the final dendrogram. 2. Efficiently assembling the final
dendrogram from its contracted version. Inserting each contracted
edge into the condensed dendrogram is highly parallel, but the
naive approach is computationally costly and not asymptotically
work-optimal. We leverage the algorithm’s recursive nature and all
levels of the condensed dendrogram to insert each contracted edge
efficiently.

PANDORA consists of three main steps: a) finding edges to con-
tract, b) contracting the minimum spanning tree (MST), and c) re-
building the original dendrogram. These steps are highly paralleliz-
able and can be easily adapted for multicore CPUs and GPU architec-
tures using parallel constructs such as parallel-for, reduce, and scan.
We implemented our algorithm using the performance-portable
Kokkos library [31], marking the first known GPU implementa-
tion for dendrogram construction. We evaluated our algorithm on
real-world and artificial datasets, comparing it to the best-known
open-source multi-core CPU implementation. Our multi-core CPU
implementation was twice as fast as the state-of-the-art, while the
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GPU variant achieved a 15-40x speedup compared to the multi-core
CPU performance. Figure 1b (right) shows that we achieved our
goal of improving the construction time by 17X, reducing it to 26%
of the overall time for this dataset.

In summary, this paper makes the following contributions:

e We propose PANDORA a novel parallel dendrogram construc-
tion algorithm that overcomes the limitations of traditional
top-down and bottom-up methods.

e We prove that any algorithm for computing a dendrogram
requires Q(nlogn) work. Our algorithm achieves this lower
bound and is thus the first work-optimal parallel algorithm
for dendrogram construction. In contrast, the best previously
known parallel algorithm[33] only achieves this bound in
the expected sense, and not in the worst casel.

e We comprehensively analyze the edge contraction technique,
establishing the necessary and sufficient conditions for the
correctness of any algorithm based on tree-contraction[27].

e We present the first known GPU implementation for den-
drogram construction, along with performance evaluations
showing significant speedups compared to state-of-the-art
multi-core CPU implementations.

Our work significantly advances the state-of-the-art in paral-
lel HpBscaN™ clustering computation on GPUs for large datasets.
When combined with recent developments in parallel Euclidean
MST computation on GPUs [25], our algorithm enables rapid Hps-
SCAN™ clustering on modern hardware. For example, a single Nvidia
A100 GPU can compute HpBscaN™ clustering in under one second
for a 37M cosmological dataset and around six seconds for a 300M
uniformly distributed point cloud. This paper focuses on HpBscAN®,
yet PANDORA applies to any single-linkage clustering algorithm.

An extended version of the paper is available in Arxiv[27] and
the performance portable implementation of HpBscaN* using Eu-
clidean MST computation from [25] and PANDORA is available with
Arborx[20]:https://github.com/arborx/ArborX.

2 BACKGROUND
2.1 Hierarchical Single Linkage Clustering

2.1.1 Hierarchical Clustering. Hierarchical clustering generates a
dendrogram, a cluster hierarchy, without specifying the number
of clusters upfront. It has two variants: agglomerative (bottom-
up) and divisive (top-down). The distance metric determines data
point similarity, resulting in single, complete, and average linkage
variations.

2.1.2  Single Linkage Clustering. Single linkage clustering (SLC) [11]
defines the distance between clusters as the minimum distance
between any two member points. Unlike complete and average
linkage, SLC excels at detecting irregularly shaped clusters. Ap-
plications include bioinformatics [28], astronomy [9], image pro-
cessing [6, 14, 29, 34], and others [16, 19, 35, 36]. SLC constructs a
minimum spanning tree (MST) from a distance matrix or spatial
search trees like kd-trees for spatial points [4, 25, 33], using Prim’s,
Kruskal’s, or Boraivka’s algorithm [5, 18, 24]. The MST then forms
a dendrogram revealing the hierarchical cluster structure.

To our knowledge, the worst-case runtime upper bound for[33] is O(n log2 n)
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Figure 2: Top-down dendrogram construction steps (Section 2.2.2). The dendrogram root is the MST’s heaviest edge, which
divides the tree into two components when removed. Subsequently, each component’s heaviest edge is identified, and its parent
is the previous step’s heaviest edge. This repeats recursively for each tree component.

Table 1: Available open-source dendrogram construction im-
plementations

Implementation Description

scikit-learn (Python) [23] Sequential implementation
hdbscan (Python) [21] Sequential implementation
hdbscan (R) [13] Sequential implementation
Wang et al. [33] Multi-threaded implementation
in shared memory

Parallel MST implementation us-
ing GPUs, sequential dendrogram
construction

rapidsai [15]

2.1.3 HDBSCAN*. HpBscaN® (hierarchical DBSCAN) [7] is a hi-
erarchical density-based clustering algorithm that groups points
by local density using minPts. It adapts Euclidean distance into the
density-aware mutual reachability distance. By using a dendrogram
with clusterings at various €, HDBscaN™ avoids manually setting
a distance threshold. Table 1 lists current HDBSCAN* implementa-
tions. Prior work parallelized HpBscAN™ by optimizing distance
and MST computations, including RAPIDS.ai/Raft’s single-linkage
clustering [15]. To our knowledge, only Wang et al. [33] parallelized
HpBscaN™ dendrogram construction on multithreaded systems.

2.2 Dendrogram and construction algorithms

2.2.1  Dendrogram and its structure. Dendrogram: A dendrogram
represents hierarchical clustering using a directed tree structure.
Data points are leaf nodes, while clusters are internal nodes. Di-
rected edges show the containment relationships between clusters.
Dendrogram in Single-Linkage Clustering: In single-linkage
clustering, the dendrogram’s internal nodes are represented by
minimum spanning tree (MST) edges. Clusters are defined by MST
edges; removing an edge splits a cluster into two. Since removing
an edge can only divide a cluster into two parts, the resulting
dendrogram is usually a binary tree.

2.2.2 Top-down dendrogram construction. The top-down den-
drogram construction algorithm uses divide-and-conquer to repeat-
edly split the graph by removing the heaviest edges[7].
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Algorithm 1 Top-down dendrogram algorithm[7]

1: function DENDROGRAMTOPDOWN(T)

2. if |V| =1 then

3 D« {V}

4 else

5: D=0

6 e « the largest edge in E

7 Remove e from E, splitting T into Ty and T
8 forall T; € {T1, o} do

9 D; « DENDrROGRAMToPDOWN(T;)

10: Set root note of D; as a child of e in D
11:  return D

The algorithm works as follows: 1. Remove the heaviest edge in

the MST. 2. Split the tree into two subtrees. 3. Recursively construct
dendrograms for each subtree under the removed edge’s parent
node. 4. Repeat steps 1-3 for all edges. Figure 2 illustrates the first
three steps of this algorithm for an example MST, and Algorithm 1
presents the corresponding pseudo-code.
Limitations of the Top-Down Approach: The top-down dendro-
gram construction often struggles with real-world data’s skewed
dendrograms. Removing the heaviest edge frequently splits the tree
into one large and one single-vertex component, instead of bal-
anced components. 1. Increased Asymptotic Cost: For highly skewed
dendrograms, the algorithm’s O(nh) cost can exceed O(nlogn) for
balanced dendrograms, lacking work-optimality. 2. Limited Paral-
lelism: The dendrogram’s skew limits parallelism. After removing
several edges, the graph typically divides into a few large compo-
nents and many isolated vertices or minor components. This im-
balance and the O(h) computation depth, potentially much higher
than O(log n), restrict parallel processing.

2.2.3  Parallel variants of the top-down approach. Wang et al.[33]
introduced a parallel variant of the top-down dendrogram construc-
tion algorithm to address the limitations of the sequential version,
where removing a single edge often results in highly skewed par-
titions. The parallel variant simultaneously removes the top n/2
edges, splitting the graph into n/2 + 1 components. Dendrograms
are then independently computed for each component before being
stitched together to form the final dendrogram. They implemented
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the algorithm in a multithreaded setting and showed that it offered
more parallelism than its sequential counterpart.

Limitations: The parallel variant offers greater parallelism but
shares similar shortcomings with the sequential version: 1. Skewed
partitions lead to work inefficiency, with the multithreaded evalua-
tion in [33] showing dendrogram construction around 10X slower
in some cases. 2. Heavy reliance on parallel list-ranking, which
significantly underperforms alternatives like prefix-sum or parallel
sort on GPUs. 3. Uneven parallelism and recursive nature pose
additional challenges for the massively parallel GPU architecture.

Algorithm 2 Bottom-up dendrogram construction using union-
find for a given minimum spanning tree T = (V, E).

Require: MST T = (V,E).

1: Sort E in descending order by weight, yielding Eg = {e;}.

2: Initialize:

e Empty union-find structure UF

e Output array ‘parent’ of size 2|E| + 1
: Notation: ¢,y = root edge of dendrogram containing vertex w.
. fori=|E|-1to0do
(u,0) « Esli]
cy, ¢y « UF.find(u), UF.find(v)
if u not found then

add {u} to UF

Cy—u

> Extract vertices of edge i
> Find roots for u, v

R A A

if v not found then
add {v} to UF

Cp 0

10:
11:
12:
13:  UF.union(cy, ¢p)

4:  parent[c,] = parent[c,] = Es[i]

> Merge components
> Set parent edges

[

Ensure: Dendrogram represented by ‘parent’ array mapping edges
to parent edges.

2.24 Bottom-up dendrogram construction. The bottom-up algo-
rithm constructs the dendrogram bottom-up, starting with the
smallest edges and iteratively merging clusters. First, the algorithm
sorts the Minimum Spanning Tree edges in descending order and
initializes an empty Union-Find structure and an output ’parent’
array. For each edge, it identifies the components containing ver-
tices u and v in the Union-Find structure [30], merging existing
components or adding new ones for missing vertices. The parent
of the newly merged components is updated to the current edge.
Algorithm 2 has a worst-case time complexity of O(nlogn) due
to the O(nlogn) sorting and the O(n.A(n)) dendrogram construc-
tion, where A(n) is the inverse Ackerman function [30]. However,
the sequential loop limits parallel efficiency, motivating a search
for a work-optimal, parallel algorithm suitable for GPUs.

3 PARALLEL DENDROGRAM COMPUTATION
3.1 High-level idea behind PANDORA

PANDORA builds upon two key concepts: dendrogram chains and
recursive tree contractions.

Definition 1 (Dendrogram Chains). A dendrogram chain consists
of MST edges {e;, ej, ek . .., €1} in parent-child relationships where
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Algorithm 3 Dendrogram Computation using Tree Contraction

Require: T = (V, E): minimum spanning tree
1: E4 < Find edges of contracted tree
2: Ty < Construct contracted tree by contracting edges in E — E,
inT
: Py < Compute dendrogram of contracted tree Ty
: > Construct complete dendrogram P from Py
: for each edge e in E — E, in parallel do
> Find the chain of e using contracted dendrogram Py
Py (e) < Find parent of e in P,
> Map e to its corresponding chains in P
C < Determine of chain containing e
Add e to set of edges in the chain C

W ® N gon

10:

11: > Order and connect chains to form P
: for each chain C do

13:  Sort edges in C by their index in E

14:  for each edge e in C, excluding the first do

15: P(e) « Find predecessor of e in C

16:  if e is first edge in sorted chain then

17: P(es) < a-edge for chain C

18: Connect chains to form the complete dendrogram P
19: return P

N g
aONON

OGN
GH%%GGSE

Figure 3: The PANDORA leverages dendrogram chains to con-
struct them efficiently. This dendrogram can be divided into
three chains: top, bottom-left, and bottom-right.

p(ei) = ej, p(ej) = e, etc., with ¢; having a parent outside the
chain. ¢; is the root of the chain.

For example, consider an inverted Y-shaped dendrogram (Fig. 3).
It consists of three dendrogram chains—top, bottom-left, and bottom-
right.

To build the complete dendrogram, PANDORA follows a three-
step process: 1. Assign each edge to a dendrogram chain using a
tree contraction method. This generates a condensed version of
the original dendrogram by condensing each chain into a single
edge, allowing us to map all edges to their respective chains. 2. Sort
the edges within each chain by weight to form dendrogram chains.
3. Connect the dendrogram chains to reconstruct the full dendro-
gram. We begin by defining essential terms and notations for our
algorithm’s description.

3.2 Terminology and notation

3.2.1  Minimum spanning tree structure. Consider a Minimum Span-
ning Tree (MST) T = {V, E, W} for which we want to calculate its
dendrogram. Let n, be the number of vertices and n = n, — 1 be
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the number of edges in the MST. Computing the dendrogram be-
gins by sorting the edges in T by descending weight, which takes
O(nlog n) time. This sorting step ensures the dendrogram’s unique-
ness and enables validating our method by consistently ordering
edges with equal weights. For simplicity, we assume the edges are
already sorted in the following discussions. We use this notation to
describe the tree’s incidence structure:

Incident edges Incident(v): The set of all edges incident to vertex
v € V. For example, in Figure 5a, Incident(a) = {ep, ez, €3, e5}.
Maximum incident edge maxIncident(v): The edge with the
highest index in Incident(v). In the example, maxIncident(a) = es.
Neighboring edges N (e): For an edge e connecting vertices v
and u, the set of edges that share a vertex with e, i.e, N(e) =
Incident(v) U Incident(u).

Edge contraction of a tree: To create a contracted tree T, =
(Ve, E¢) fromatree T and an edge subset E., we contract the edges in
E—E_ as follows. Initialize V;, = V. For each edge e = (u,v) € E—E_:
1. Merge u and v into a supervertex vu 2. Remove u and v from V,
3. Add supervertex vu to V¢ 4. vu inherits the neighbors of u and o,
excluding u and v. 5. Repeat for all edges in E — E.. The resulting
T¢ has the modified vertex set V; and edge subset E..

3.22 Dendrogram structure. A dendrogram D = {Vj;,E;} is a
directed rooted binary tree. The vertex set V; contains two node
types: vertex nodes (leaf nodes) representing individual data points,
and edge nodes (internal nodes) representing clusters. The parent
function P maps each node v to its parent u, defining directed links
that establish parent-child relationships and the edge set E;, which
contains directed edges (v — u) for each node v, where u = P(v).
Computing the dendrogram is equivalent to finding the parent P of
each node.

Parent of a vertex-node: In a dendrogram, the parent of a vertex-
node v € V is the edge that disconnects v from the tree when
removed during the top-down process, which sequentially removes
edges in Incident(v) from heaviest to lightest. Thus, the dendro-
gram parent of vertex v is the edge in Incident(v) with the largest
index:

P(v) = maxIncident(v) Yo eV; (1)
For instance, in Figure 5a, P(a) = es5. The tree’s incidence structure
allows determining the parents of all vertex nodes v € V. However,
the main challenge lies in identifying the parents of the edge nodes.

3.2.3 Types of edge nodes. Edge nodes in a binary dendrogram are
classified by the number and type of their children. Each edge node
has two children, which can be either edge or vertex nodes, leading
to three types of edge nodes (Figure 4): a) Leaf edges: Edge nodes
with two vertex node children. b) Chain edges: Edge nodes with
one vertex node child and one edge node child. c) a-Edges: Edge
nodes with two edge node children and no vertex node children.
The MST’s local incidence structure and Equation 1 allow classify-
ing an edge node as a leaf, chain, or a-edge based on its children.
However, identifying an edge node’s parent remains challenging, as
parent-child relationships often extend beyond neighboring nodes.
For example, in Figure 5b, edge node ey’s parent is e, despite e;
and ey being in separate tree sections.
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Figure 4: Different edge nodes in a dendrogram. We show
the dendrogram corresponding to the MST in Figure 5a. We
mark the vertex nodes as triangles and edge nodes as circles.
The edge nodes are further classified into three types: leaf
edges (with two vertex nodes as children), chain edges (with
one vertex and one edge node as children), and a-edges (with
two edge nodes as children).

3.24 Dendrogram chains and skewness. Dendrogram chains: A
dendrogram chain is an unbranched lineage consisting of a series
of chain edges that end in either a leaf or an a edge. Each chain
edge node, except the last, has a single child: the next edge in the
chain. Leaf chains are chains that end in a leaf edge.

Skewness of the Dendrogram: A dendrogram’s skewness, de-
fined as the ratio of its height to the ideal height of log, n, can
increase significantly due to a large number of chains. High skew-
ness is commonly observed in real-world dendrograms, even in
low-dimensional Gaussian dendrograms, posing challenges for de-
veloping parallel dendrogram algorithms. This skewness is preva-
lent across various datasets, from GPS locations to cosmology and
power usage (see Table 2.)

3.3 Recursive tree contraction

Pandora condenses the minimum spanning tree (MST) by contract-
ing all but the a edges, creating a simplified version. This condensed
MST’s dendrogram matches the full dendrogram’s structure ob-
tained by merging chain and leaf nodes. The simplified dendrogram
effectively captures the essence of the full dendrogram.

3.3.1 Computing a-Edges: An a-edge is an edge-node that has two
children that are also edge-nodes. For an edge-node e = {v,u},
if one of its children is a vertex node, it will be either v or u. The
parent of vertex v is given by P(v) = maxIncident(v). If k is not
equal to maxIncident(v) or maxiIncident(u), then ey is not a parent
of either vertex node incident on it, meaning both its children are
edge-nodes. Therefore, an edge-node e; = {v, u} is an a-edge if:

k # maxiIncident(v) and k # maxiIncident(u). (2)

Equation (2) allows for the identification of all a-edges using a
constant-time operation for each edge.

Figure 5 demonstrates this process. In the Minimum Spanning
Tree (MST) example shown in Figure 5a, the a-edges are high-
lighted in Figure 5b. For example, e16 = {i, d} is an a-edge because
maxIncident(i) = 20 and maxIncident(d) = 18, both different from
16. None of the terminal edges are a-edges. For instance, e; = {m, k}
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(a) An MST (not to scale) (b) highlighted ar-edges (c) a-MST (d) f-MST  (e) f-Dendrogram (f) a-Dendrogram

Figure 5: Fig. 5a shows the original MST. Fig. 5b highlights the a-edges, whose removal divides the tree into color-coded
components. These components contract into a-vertices. Fig. 5¢ depicts the resulting a-MST, the first contraction level formed
by a-vertices and a-edges. A second contraction level forms the f-MST (Fig. 5d). Both «-MST and -MST show the contracted
edges within supervertices. Finally, the ¢-dendrogram and f-dendrogram correspond to the a-MST (Fig. 5¢) and f-MST (Fig. 5d)

respectively.

is not an a-edge because maxIncident(m) = 1. Additionally, several
internal edges like ey and e;7 are also non-a edges.

3.3.2 Computing a-MST:. We first identify the a edges in the orig-
inal tree. Then, we contract the remaining non-« edges to create a
new tree called the a-MST (Ty). In T, each vertex is an a-vertex,
representing multiple vertices from the original tree that have been
contracted. We also maintain a mapping between the original ver-
tices and their T,, counterparts, which is crucial for tracing back to
the original structure.

For example, Figure 5b shows an MST with highlighted o edges.

We contract the non-a edges to obtain the contracted tree in Fig-
ure 5c. Vertices in Figure 5b merged to form a supervertex share
the same color. In Figure 5c, vertices a, n, o, and p are merged into
a single cyan-colored supervertex.
Multilevel tree contraction: We can compute the dendrogram of
Tq by recursively contracting edges. In each iteration, we identify
a-edges in the current contracted tree and contract the remaining
edges to create the tree for the next iteration. The recursion stops
when no a-edges remain, resulting in a single chain dendrogram
obtained by sorting the edges by their indices.

Figure 5d shows the f-MST, which is the result of applying a sec-
ond contraction level to the «-MST in Figure 5c. The f-MST cannot
be further contracted, ending the recursion. Figure 5e represents
the final contraction stage as the f-dendrogram.

In summary, we begin with a complete Minimum Spanning Tree
(MST) and generate a series of smaller trees by applying multilevel
tree contractions. This process iterates until the resulting tree con-
tains no a edges. Sorting the edges of this final tree produces a
highly compact single chain dendrogram. The following section
describes how to expand this condensed dendrogram into a com-
prehensive representation.

3.4 Efficient Dendrogram Expansion

This section explains how to construct a complete dendrogram
from a condensed dendrogram through a process called expansion.
Section 3.4.1 describes single-level expansion, which is suboptimal
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Finding P, (e(,) Requires Two Steps (not optimal):

1. Finding a descendant of es 2. Traversing the contracted dendrogram

P,(es) = max{k € Ancestor(e;3) and k < 6} = ¢,
k
&0 /
) ©

N
C = Supernode containing e
Descendent(e;) = max Incident(C) = e

00
o

Adjacency structure of T, u e, Dendrogram of T, U ¢4

Pley3)

A

Figure 6: Inserting a non-« edge ¢4 into the a-dendrogram. In this process, a
single level contraction is done within the supervertex to find the parent of the
edge. For example, in the case of edge es, we identify its parent by finding the
maximum incident edge of the supervertex C, which is e;3. We consider e;3 as
a descendant of es. To locate the parent of eg, we go through the dendrogram
upwards and select the ancestor with the highest index among all ancestors
of P, (e13). This way, we determine that the parent of e is e;, represented in
the dendrogram of T, U e;. However, this accurate method can be inefficient
because it may require traversing the entire dendrogram.

for reconstructing a dendrogram. To address this limitation, Sec-
tion 3.4.2 presents an efficient expansion algorithm that utilizes all
contraction levels.

3.4.1 Single-Level Dendrogram Expansion. Given an input Mini-
mum Spanning Tree (MST) T, a contracted tree T, containing all
a edges, and the dendrogram of T, specified by the parent-child
relation Py, the objective is to assign each non-a edge to a specific
dendrogram chain. The assignment process follows these steps:

1. Find the a-vertex V,(e) containing edge e. 2. Determine
Vi (€)’s dendrogram parent P, (Vg (e)) in the a-dendrogram. 3. Tra-
verse the a-dendrogram upwards from P, (V,(e)) until encounter-
ing an o edge with a smaller index than e. This edge becomes e’s
dendrogram parent, denoted as P, (e).
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Figure 7: Expanding the contracted dendrogram: 1. Figure 7a shows the o dendrogram, where triangles represent o edges and
circles represent o vertices. The diagram displays non-a edges within their corresponding « vertices. 2. To identify non-« edges
belonging to an « leaf chain, we compare each edge’s index to its @ parent’s index (Figure 7a). Edges with indexes above the o
parent belong to the « leaf chain. 3. For the remaining non-« edges, we determine if they belong to a § leaf chain by comparing
each edge’s index to the f edge, the parent of the previously identified o parent. Edges with indexes higher than the j parent are
assigned to the f leaf chain (Figure 7c). This process continues until all edges are assigned to a leaf chain or no more contraction
levels remain. 4. Any unassigned edges after the previous steps are allocated to the root chain if further contraction is not
possible (Figure 7d). 5. Finally, the algorithm merges the sorted chains to form the final dendrogram (Figure 7e).

Consider mapping edge es into the dendrogram for the minimum
spanning tree (MST) shown in Figure 5. V4 (eg) = C contains eg
(Figure 5c). In the a-dendrogram, V,(eg)’s parent is Py (Vg (es)) =
e13 (Figure 5f). To find eg’s parent, traverse the alpha dendrogram
bottom-up from ej3, seeking an a edge with a lower index than eg
(Figure 6). The lower-indexed edge e becomes eg’s a-parent. Since
e7 is placed on ey’s left side, eg is assigned to chain 2L. However,
this method is suboptimal as it requires bottom-up traversal of the
alpha dendrogram for all non-a edges. In the worst case, the alpha
dendrogram tree height can be O(n), resulting in O(n?) work to
find chains for all non-« edges.

3.4.2 Efficient Dendrogram Expansion from Multilevel Tree Con-
traction. Dendrogram expansion can be optimized with two key
observations: First, edges in a leaf chain can be quickly identified
without traversing the entire a dendrogram. Second, for edges not
in an @ dendrogram leaf chain, their membership in a f dendrogram
leaf chain can be efficiently checked. By recursively applying this
process, all edges are associated with a leaf chain at some level.
Rather than inefficiently traversing the @ dendrogram bottom-up,
leaf chain membership is checked starting at the dendrogram level.
This is more efficient since the number of contraction levels is
log, n.

Leaf Chains: Leaf chains are linked to their respective dendro-
grams. An « leaf chain is a sequence that concludes with a leaf
edge in the dendrogram. For example, in Figure 7e, the sequence
denoted by 16L qualifies as an « leaf chain. Removing all « leaf
chains from a dendrogram reveals new f leaf chains ending with
an o edge. A f3 leaf chain may encompass multiple a chains that are
not leaves, and the « edges linked to these chains become part of
the f chain. These a and non-a edges together create an unbroken
lineage within the full dendrogram. This concept of leaf chains can
be extended to higher-level contractions as well.
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Mapping Edges to a Leaf Chain: An edge’s leaf chain membership
at any level can be efficiently determined in constant time. The
earliest level each edge joins a leaf chain is identified. For each non-
a edge e, its membership in an « leaf chain is checked by comparing
e’s index to its a parent’s index. If the @ parent’s index is lower, e
is in an « leaf chain. Otherwise, e’s membership in a f leaf chain is
checked by comparing it to its f§ parent. Determining an edge’s leaf
chain membership at any level takes O(1) time. Non-a edges are
mapped to chains by checking their membership in a, f, etc. leaf
chains until placed. Any remaining edges are grouped in the root
chain. The cost of mapping an edge to a leaf chain is determined
by the number of contraction levels.

Example: To map edge e1s to a chain: a) Its a-vertex is C (Figure
5¢). b) P (C) = 13 (Figure 5f). ¢) Since 15 > 13, e15 is in the 13R leaf
chain. For edge eq1: a) The a-vertex is E, with Py (E) = 16 (Figure
5f). b) As 16 > 11, e11 is not in an « leaf chain. c¢) The f-vertex is X
(Figure 5d), with Pg(X) = 7 (Figure 5e). d) Since 11 > 7, e1 isina
p-leaf chain.

The mapping process: 1. Start with the a-dendrogram (Figure
5f) 2. Determine Vj, for all edges (Figure 7a) 3. Identify « leaf chain
edges (Figure 7b) 4. Check remaining edges for f leaf chains (Figure
7¢) 5. Assign non-leaf chain edges to the root chain (Figure 7d)

3.4.3  Final dendrogram construction. In the previous step, we as-
signed all edges to a leaf or root chain. Now, we use this to build
the entire dendrogram: a) Sorting Chains: Sorting each chain
forms partial dendrograms. In the sorted chain, we assign each
edge’s parent to its predecessor, except for the first edge, handled
in the next step. b) Stitching Chains: Each chain is a leaf chain
of a contracted edge from a contraction level. The parent of the
first edge in a chain is the corresponding edge for that chain. For
instance, the a-leaf chain (17, 20) corresponds to a-edge ej4 (Fig-
ure 7b), while f-leaf chain (16,11, 14) corresponds to f-edge ey
(Figure 7c). Thus, the parent of eq7 is a-edge ej¢, and the parent of
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e11 is f-edge ey (Figure 7e). Connecting chains this way forms the
complete dendrogram (Figure 7e).

3.5 Performance portable implementation

Kokkos We used Kokkos [31], a performance-portable program-
ming model for CPUs and GPUs from Nvidia, AMD, and Intel, to
implement our algorithm. Kokkos abstracts execution ("execution
space") and memory resources ("memory space"), but users must
explicitly manage data movement between these spaces, as Kokkos
does not perform hidden data copies. Kokkos provides parallel pat-
terns, such as loops, reductions, and scans, that abstract hardware
complexity.

PaNDORA implementation The PANDORA algorithm has two main
computational tasks: tree contraction and dendrogram expansion.
During dendrogram expansion, PANDORA maps contracted edges to
their chains in parallel, avoiding significant load imbalance. Outside
of Kokkos, parallel loops, reductions, prefix sums, and sorts used
in these algorithms are widely available in many parallel libraries,
such as Thrust [8].

3.6 Asymptotic Work Analysis

This section proves PANDORA is work-optimal. We first establish
the lower bound of Q(nlogn) for any dendrogram computing al-
gorithm and show that PANDORA achieves this bound.
Asymptotic Lower Bounds for Dendrogram Computation
Computing a dendrogram requires at least as many operations
as sorting n floats. However, not all methods require sorting. For
example, the top-down approach (Algorithm 1) can be performed
without sorting. We prove that the lower bound for any dendrogram
algorithm is Q(nlogn).

Theorem-1: In the worst case, computing a dendrogram from a
tree with n edges requires Q(nlogn) operations.

Proof: To prove the lower bound, consider the problem of sort-
ing n floats. First, construct a minimum spanning tree T with the
floats as edge weights. The tree has n + 1 vertices and n edges in
a star topology, with one central vertex connected to all others.
The dendrogram of T is a single chain of edges sorted by weight,
allowing the floats to be extracted in sorted order in O(n) time.
If the dendrogram could be computed in little-o o(nlog n) time, it
would enable sorting the n floats faster than the Q(nlogn) lower
bound, which is impossible. Therefore, in the worst case, computing
the dendrogram requires Q(nlogn) operations.

Asymptotic Work Complexity for PANDORA PANDORA con-
structs the dendrogram of an MST with n edges in O(n log n) opera-
tions. We bound the number of edges in each level of the contracted
MST, including leaf edges (nj), chain edges (n.), and « edges (ny)
(Section 3.2). We prove that n, < (n — 1)/2 and the number of
contraction levels is at most [log, (n + 1)]. This implies the total
cost of edge contractions is O(n) and dendrogram expansion costs
O(nlogn). Sorting, done twice, costs O(nlogn) each time. The
overall cost is O(nlogn), making the algorithm work-optimal.
Proof of n, < (n—1)/2: The number of leaf edges is always one
more than the number of a-edges: ny = n;—1. Since the dendrogram
has only a, leaf, and chain edges, ny + n; + n¢ = n. Substituting
ng = ny—1, we have n. = n—2n4 —1. Chain edges are non-negative,
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Table 2: Datasets used in experiments

Name Dim nps Imb' Ref.! Desc.t
Ngsimlocation3 2 6M 1e3 [1] GPSloc
RoadNetwork3 2 400K 150 [17] Road network
Pamap?2 4 3.8M 6e3 [26] Activity monitoring
Farm 5 3.6M 5e4 [2] VZ-features[32]
Household 7 2.0M 1e3 [3] Household power
Hacc37M 3 37M 1e5 [12] Cosmology
Hacc497M 3 497M6e5 [12] Cosmology
VisualVar10M2D 2 10M 3e3 [10] GAN
VisualVar10M3D 3 10M 1le4 [10] GAN
VisualSim10M5D 5 10M 43 [10] GAN
Normal1l00M2D 2 100M 1e5 - Random (normal)
Normal300M2D 2 300M 4e5 - Random (normal)
Normal1l00M3D 3 100M 4e5 - Random (normal)
Uniform100M2D 2 100M 1e5 - Random (uniform)
Uniform100M3D 3 100M 4e5 - Random (uniform)

Tmb. = Dendrogram imbalance, Ref. = Reference, Desc. = Description

ie., ne > 0, so:

ng < (n—1)/2.
Number of Contraction Levels: Each tree contraction halves the
number of edges in the contracted MST. After k levels, the number
of remaining edges is at most (n — 2% + 1)/2%. There are no edges
left after k reaches [log,(n+1)].
Cost of Edge Contraction: Tree contraction on a tree with n
edges is equivalent to a prefix sum on an array with 2n entries
[22], requiring < cqn operations for some constant c¢;. The total
contraction cost is < 2c¢yn operations.
Cost of Dendrogram Expansion: Mapping each edge to its den-
drogram chain costs O(log n). Checking if an edge is in a leaf chain
at the k-th contraction level is O(1). With O(logn) contraction
levels, mapping all n edges costs O(nlogn).
Total Cost of Dendrogram Construction: Two O(nlogn) sort-
ing operations, along with O(n) tree contraction and O(nlogn)
dendrogram expansion, make our algorithm work-optimal with an
overall cost of O(nlogn).

4 EXPERIMENTAL RESULTS

In our implementation, we used ArborX [20] (version 1.4-devel) to
compute EMST, and Kokkos [31] (version 3.7) for implementing
our parallel dendrogram algorithm. The implemented algorithm is
available in the main ArborX repository?.

Testing environment. The numerical studies were performed
using AMD EPYC 7A53 (64 cores), Nvidia A100 and a single GCD
(Graphics Compute Die) of AMD MI250X3. The chips are based
on TSMC’s N7+, N7 and N6 technology and can be considered to
belong to the same generation. We used Clang 14.0.0 compiler for

Zhttps://github.com/arborx/ArborX
3Currently, HIP (Heterogeneous-computing Interface for Portability) ~ AMD’s pro-
gramming interface — only allows using each GCD as an independent GPU.
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Figure 8: Performance comparison of the multithreaded (using AMD EPYC 7A53) and parallel (using Nvidia A100 and AMD

MI250X (single GCD)) implementations.
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Figure 9: Comparison of the time to compute first two steps of the HpBscan™ algorithm using MEM0OGFK on AMD EPYC 7A53
(blue) and ArborX+our dendrogram algorithm using AMD MI250X (single GCD) (orange).
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AMD EPYC 7A53, NVCC 11.5 for Nvidia A100, and ROCm 5.4 for
AMD MI250X.

Datasets. We thoroughly evaluated our algorithm using the arti-
ficial and real-world datasets in Table 2. The GPS locations and
HACC datasets mimic real-world conditions, while the datasets
from [10] enable comparison to other works. Synthetic datasets
elucidate our algorithm’s behavior in different scenarios. For Hps-
SCAN* on low-dimensional datasets, dendrogram construction is
the main bottleneck. However, as MST cost increases with dimen-
sions, the dendrogram is not the bottleneck for higher-dimensional
datasets. Therefore, we focus on datasets up to seven dimensions.
Table 2 includes each dataset’s dendrogram height ratio relative to
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a perfectly balanced binary tree, indicating the dendrograms’ skew-
ness and the difficulty of adequate parallelization for an efficient
algorithm.

Competing Implementation We evaluate PANDORA’s perfor-
mance on multithreaded AMD EPYC 7A53, Nvidia A100 and AMD
MI250X (single GCD). Our baseline is UNIONFIND-MT from https:
//github.com/wangyigiu/hdbscan [33]. UNIONFIND-MT involves a
parallel multithreaded sort and a sequential Union-find step. We
used this implementation for verification. To our knowledge, this
is the fastest available dendrogram computation implementation,
and we use it as a baseline for comparison.

Performance Metrics: We measure performance in MPoints/sec,
the number of points (in millions) processed per second, computed
as le-6 " #points in dataset/ Time to compute dendrogram.
HpBscaNn™ Parameters selection: The only relevant parameter
is mp¢s, the number of points to compute the core-distance. Differ-
ent mp;s values produce different dendrograms, affecting the time
spent on MST and dendrogram construction. We use the default
mpts = 2 except for Figure 9 where we evaluate HDBScAN™’s per-
formance for different my;s values. PANDORA’s performance gains
over UNIONFIND-MT increase with my;s, so for a fair comparison
we use Mprs = 2 in other experiments.


https://github.com/wangyiqiu/hdbscan
https://github.com/wangyiqiu/hdbscan
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Figure 11: Speedup of AMD MI250X over AMD EPYC 7A53
for different phases of HDBSCAN™ withPANDORA.

4.1 Performance of Dendrogram Construction

We evaluate the performance of the baseline UNIONFIND-MT and
PANDORA on various architectures across different datasets. The
results are shown in Figure 8.

Multithreaded performance PANDORA outperforms UNIONFIND-
MT in multithreaded scenarios, with speed-ups of 0.66-2.2x, except
for the RoadNetwork3D dataset which has the smallest size and
lower dendrogram imbalance. Smaller 2D datasets have limited
multi-threading scalability, while 3D and 4D datasets have more
significant speed-ups, up to 2.2x faster. PANDORA maintains a slight
edge on higher-dimensional datasets, which have higher overall
throughput. Despite twice the sequential work, PANDORA remains
faster than UNIONFIND-MT in a multithreaded setting.

GPU performance PANDORA is 6-20X faster on AMD MI250X
(single GCD) than on AMD EPYC 7A53, and Nvidia A100 outper-
forms the fastest multithreaded variant by 10-37X. The RoadNet-
work3D has the lowest performance due to its small size not allow-
ing GPU saturation. Lower-dimensional datasets generally have
higher speed-ups, likely due to lower-dimensional substructures in
higher-dimensional datasets. PANDORA performs well for all ranges
of dendrogram skewness, achieving considerable speed-ups over
multithreaded PANDORA even with an imbalance of 43 in Visual-
Sim10M5D. PANDORA has sufficient parallelism to utilize modern
GPUs and works well with both highly skewed and not-so-skewed
dendrograms.

Our implementation delivers portable performance across mul-
ticore and GPU architectures from a single source. We did not
optimize for specific device architectures or investigate the impact
of differences between AMD MI250X and Nvidia A100. However,
primarily using Nvidia A100 in development may have led to a
performance bias towards that architecture.

Scalability of different phases in PANDORA Figure 11 shows
the speed-up of AMD MI250X over AMD EPYC 7A53 for the fol-
lowing phases of HpBscAN* with PANDORA: a) EMST construction
b) Multilevel Contraction of MST c¢) Reconstruction of the dendro-
gram from the contracted MST d) Sorting (includes both initial and
final sort, as well as other operations) Sorting is the most scal-
able phase, 10-20% faster than AMD EPYC 7A53, while multilevel
edge contraction scales the worst at 3-5X. On AMD EPYC 7A53,
sorting dominates the runtime, followed by multilevel edge con-
traction, with negligible dendrogram reconstruction time. PANDORA
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Figure 12: Breakdown of time spent PANDORA in on AMD
EPYC 7A53.

achieves significant speed-ups on AMD MI250X compared to AMD
EPYC 7A53, with strong overall performance despite multilevel
edge contraction’s scaling limitations.

Scaling Problem Size Determining the smallest problem size
at which a parallel algorithm achieves peak performance helps
gauge its effectiveness. We studied how dataset size affects the
performance of the PANDORA algorithm. We randomly sampled
large datasets to test the algorithm’s sensitivity to data distribu-
tion. Figure 10 shows the results for three datasets (Hacc497M,
Normal300M2, and Uniform300M3) on AMD MI250X. For compari-
son, we also show UNIONFIND-MT’s performance on AMD EPYC
7A53. UNIONFIND-MT’s performance immediately peaks and then
slowly decreases. In contrast, PANDORA’s performance increases
with sample size until saturating. By 30,000 samples, PANDORA-
GPU outperforms UNIONFIND-MT. As typical for GPU algorithms,
saturation occurs around 10° samples.

4.2 HbpsscanN” Performance

We evaluated PANDORA’s impact on HDBSCAN computation on
AMD EPYC 7A53 and AMD MI250X, using: 1. MEMOGFK [33], a
multithreaded HpBScAN™ implementation, as the baseline 2. Ar-
borX’s [25] GPU MST computation and PANDORA for the GPU Hps-
scAN” dendrogram computation Results were based on Hacc37M
and Uniform100M3D datasets, focusing on the my;s parameter,
which solely affects these phases.

Figure 9 shows the results: 1. ArborX with PANDORA on AMD
MI250X is 8-12X faster than multithreaded MEMOGFK overall. More-
over, PANDORA’s dendrogram computation on AMD MI250X is
17-33x% faster than MEMOGFK’s UNIONFIND-MT. 2. PANDORA uses
less than a third of the total HpDBscaN™ time, whereas UNIONFIND-
-MT can exceed half. 3. Increasing mp;s from 2 to 16 raised den-
drogram computation time by 1.1-1.5X for PANDORA and 1.6-2.4X
for UN1ONFIND-MT. 4. The speed-up of dendrogram computation
increases with my;s. However, higher my;s values demand more
resources for EMST computation, potentially counterbalancing the
benefits of quicker dendrogram computation.

5 CONCLUSION

We presented a new parallel algorithm to construct a dendrogram
using GPUs and described the implementation details. Experimental
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results confirmed the algorithm’s performance, portability, and effi-
ciency on various datasets and hardware architectures compared to
existing approaches. To our knowledge, this is the first dendrogram
construction algorithm on GPUs. Combining our algorithm with
EMST on GPUs enables HpBscaN™ clustering in under a minute
for GPU memory-fitting datasets; we plan to extend it to larger-
than-memory datasets in the future. While this paper focuses on
HbpBscaN™, PANDORA is applicable to any single-linkage clustering
algorithm. Future work will focus on improving kernel efficiency
and exploring alternate MST compression algorithms to leverage
the untapped potential in this area.
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