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Abstract. As the supercomputing landscape diversifies, solutions such
as Kokkos to write vendor agnostic applications and libraries have risen
in popularity. Kokkos provides a programming model designed for per-
formance portability, which allows developers to write a single source
implementation that can run efficiently on various architectures. At its
heart, Kokkos maps parallel algorithms to architecture and vendor spe-
cific backends written in lower level programming models such as CUDA
and HIP. Another approach to writing vendor agnostic parallel code is
using OpenMP’s directives based approach, which lets developers anno-
tate code to express parallelism. It is implemented at the compiler level
and is supported by all major high performance computing vendors, as
well as the primary Open Source toolchains GNU and LLVM. Since its
inception, Kokkos has used OpenMP to parallelize on CPU architectures.
In this paper, we explore leveraging OpenMP for a GPU backend and
discuss the challenges we encountered when mapping the Kokkos APIs
and semantics to OpenMP target constructs. As an exemplar workload
we chose a simple conjugate gradient solver for sparse matrices. We find
that performance on NVIDIA and AMD GPUs varies widely based on
details of the implementation strategy and the chosen compiler. Further-
more, the performance of the OpenMP implementations decreases with
increasing complexity of the investigated algorithms.

Keywords: Kokkos · OpenMP · GPUs · parallel programming ·
performance portability

1 Introduction

As high performance computing enters the exascale computing era, the largest
supercomputers are dominated by GPU accelerated system designs. For almost a
decade, these platforms, including the latest NERSC system, Perlmutter, exclu-
sively deployed GPUs from NVIDIA. This single vendor trend is changing with
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the first deployed exascale machines. The recently launched Frontier system
at Oak Ridge National Laboratory and the upcoming El Capitan platform
at Lawrence Livermore National Laboratory use AMD GPUs, while Argonne
National Laboratory’s Aurora supercomputer will use Intel GPUs.

A challenge arising from this architectural diversity is that each vendor
has their own preferred programming model. NVIDIA provides CUDA, first
introduced in 2007. AMD developed the HIP programming model, which is
closely modelled after CUDA. Data Parallel C++ (DPC++), an extension of
the Khronos SYCL standard [7], is Intel’s preferred choice for implementing
code on their GPUs. Writing applications and libraries directly in each ven-
dor’s preferred programming model thus requires the implementation of four
versions, assuming one would want to support multicore CPU execution as well.
To eliminate this unmanageable software development and maintenance over-
head, vendor independent higher-level frameworks such as Kokkos [2,11,12] and
RAJA [1] were developed. These frameworks promise performance portability by
providing a common interface for expressing parallelism and data management,
which is then mapped to the vendor specific programming models.

There are also efforts to make the vendor specific models portable across
architectures. SYCL itself is designed as a hardware agnostic programming
model, and Intel’s DPC++ compiler has the ability to target NVIDIA GPUs and
to a lesser degree AMD GPUs. AMD’s HIP model can be mapped to CUDA by
coupling AMD’s toolchain to NVIDIA’s. Community research efforts in LLVM
are also working to compile CUDA to other architectures [3]. However, in practice
there are very few projects relying on these portability efforts of the vendor mod-
els, due to concerns over full support on all architectures. In particular, support
contracts which are part of the large supercomputing procurements generally
only cover the vendor’s own toolchain. The portability frameworks do not have
the same issue, since they leverage the native toolchains on each architecture.

OpenMP [10] is the one vendor independent node-level programming model
standard which all the vendors support to varying degrees, and which is generally
part of the contractual requirements in the large supercomputing procurements.
Furthermore, it is not only supported by vendor specific compilers, but also by
the two primary open source toolchains, LLVM and GCC. OpenMP uses a direc-
tive based approach, which allows developers to annotate existing code to express
parallelism. This approach has been used to good effect on CPU based systems
for two decades. Since version 4.0 [9], OpenMP has also supported directives for
accelerators such as GPUs, and those directives have evolved significantly with
subsequent versions. However, the available subset of the specification, the qual-
ity of implementation of those subsets, and even the interpretation of intended
behavior of some features are different in each toolchain, causing challenges when
using OpenMP for performance portability.

In this paper we explore these challenges using the effort of porting Kokkos to
use OpenMP as a hardware independent backend implementation. That effort
was conceived as a means to provide for Kokkos a second toolchain path on
each platform, in addition to the vendor specific programming models. Having
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multiple toolchains, and specifically compilers, available on each system allows
for redundancy and more overall robustness of the software stack. It also prepares
Kokkos for a situation where a new hardware vendor may not develop a unique
programming model, leveraging the OpenMP specification instead. Additionally,
other performance portability frameworks have explored the use of OpenMP
offloading in their backend implementations [6,8].

In this paper we use the conjugate gradient solver (CG-Solve) described
in [12] as an exemplar to discuss various concepts in Kokkos, how they are
mapped to OpenMP, and the challenges which arise. The results demonstrate
the performance achieved by the CG-Solve example and its individual kernels
on NVIDIA A100 GPUs available on Perlmutter and AMD MI250x available on
Crusher (testbed for Frontier). We use the latest clang compiler from the main
branch of llvm (dated 5/15/2023) and vendor specific compilers for each of the
GPUs, i.e., NVHPC/22.7 on A100 and amdclang available with rocm/5.4.3 on
MI250x. We will refer to these as LLVM, NVHPC and ROCM respectively.

Our CG-solve exemplar is not an attempt to present the very best implemen-
tation of CG-Solve, nor to improve upon the existing math algorithms. Specifi-
cally we are not exploring the use of different sparse matrix storage formats or
various possible parallelization schemes for the algorithms. This paper is primar-
ily concerned with the question of how Kokkos usage of OpenMP compares to the
native OpenMP implementations and how the OpenMP offload implementation
compares to the use of native CUDA and HIP backends in Kokkos, given a spe-
cific algorithm and parallelization strategy. Also, note that while we have used
CG-solve as vehicle to present issues arising when mapping Kokkos to OpenMP,
the actual Kokkos backend must be robust and applicable to a wide variety
of applications built upon Kokkos. Therefore, optimizations, e.g., OpenMP set-
tings, that may benefit CG-solve but are not be universally appropriate would
not be considered for inclusion in the Kokkos OpenMPTarget backend.

2 CG-Solve

The conjugate gradient solver (CG-Solve) [5] is a simple iterative linear solver,
which use three primary linear algebra functions: a vector addition (axpby), an
inner product (dot) and a sparse matrix vector multiply (spmv). In each iteration
the axpby is called four times, the dot twice and the spmv once. Listing 1.1 shows
the pseudo code for the solver. The three operations exhibit three common pat-
terns found in data parallel programming: simple data parallel loops, reductions,
and nested loops. The overall algorithm is largely bandwidth limited. However
the pure vector operations are often latency sensitive on GPU systems, since at
typically observed vector lengths of 100,000 to 1,000,000 entries per device the
vector operations can execute in under 20us there. Furthermore, axpby, dot and
spmv are not just important for CG-Solve, but are also the fundamental building
blocks in many other linear solvers.
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Listing 1.1. CGSolve
for (int64_t k = 1; k <= max_iter && normr > tolerance; ++k) {

if (k == 1) {
axpby(p, one , r, zero , r); // AXPBY

} else {
oldrtrans = rtrans;
rtrans = dot(r, r); // DOT
double beta = rtrans / oldrtrans;
axpby(p, one , r, beta , p); // AXPBY

}
normr = std::sqrt(rtrans);
double alpha = 0;
double p_ap_dot = 0;
spmv(Ap , A, p); // SPMV
p_ap_dot = dot(Ap, p); // DOT
if (p_ap_dot < brkdown_tol) {

if (p_ap_dot < 0) {
std::cerr << "miniFE:: cg_solve!ERROR ,!numerical!breakdown!"

<< std::endl;
return num_iters;

} else
brkdown_tol = 0.1 * p_ap_dot;

}
alpha = rtrans / p_ap_dot;
axpby(x, one , x, alpha , p); // AXPBY
axpby(r, one , r, -alpha , Ap); // AXPBY
num_iters = k;

}

The remainder of this section discusses the Kokkos implementation of axpby,
dot and spmv, mapping them to OpenMP, and the challenges we encountered.

2.1 AXPBY

The vector addition (axpby) function in CG-Solve is a simple data parallel loop,
with no dependencies between iterations. It is straightforward to express in most
programming models, including Kokkos.

Listing 1.2. Kokkos Vector Addition (axpby)
void axpby (double a, Kokkos::View <double*> x,

double b, Kokkos::View <double*> y) {
Kokkos:: parallel_for("AXPBY", x.extent (0), KOKKOS_LAMBDA(const int i) {

y(i) = a*x(i) + b*y(i);
});

}

A Kokkos View expresses a possibly multi-dimensional array. This function
only uses its simplest version representing a plain one-dimensional contiguous
vector. The Kokkos parallel_for execution pattern expresses a parallelizable
loop. It takes as arguments a label (for debugging and profiling purposes), an
iteration range, and the loop body expressed through a C++ lambda. Kokkos is
a descriptive programming model, which does not guarantee any specific imple-
mentation strategy on architectures. Its parallel loops do not imply order nor
concurrency, and thus can be mapped to thread, vector or pipeline parallelism.

An equivalent OpenMP implementation of axpby for GPUs (assuming man-
ual data management) is given in Listing 1.3.
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Listing 1.3. OpenMP Vector Addition (axpby)
void axpby (int N, double a, double* x,

double b, double* y) {
#pragma omp target teams distribute parallel for simd nowait is_device_ptr(

x,y)
for(int i=0; i< N; i++) {

y[i] = a*x[i] + b*y[i];
}

}

In its implementation of parallel_for, Kokkos uses a partial specialization
approach, where the lambda is handed to a backend specific implementation of
the parallel loop. Simplified, this strategy looks like the code in Listing 1.4.

Listing 1.4. parallel_for OpenMPTarget backend
template <Functor >
struct ParallelFor <Functor , OpenMPTarget > {

int N; Functor f;
void execute () {

#pragma omp target teams distribute parallel for simd nowait
for(int i=0; i< N; i++) { f(i); }

}
};

template <class Functor >
void parallel_for(string label , int N, Functor f) {

ParallelFor <Functor , OpenMPTarget > closure{N,f};
closure.execute ();

}

Note that the only fundamental difference between the direct OpenMP imple-
mentation and the Kokkos backend implementation is the expression of the loop
body via a C++ lambda. However, we have observed that the OpenMP compil-
ers are very sensitive to the use of seemingly unrelated C++ patterns. Specifi-
cally, significant performance difference can be observed when writing algorithms
in two different – but from the C++ perspective equivalent – ways. One such
instance is the use of C++ lambdas. To illustrate that difference, we measured
performance also for versions of the algorithms written directly in OpenMP, but
using lambdas, as shown in Listing 1.5.

Listing 1.5. OpenMP Vector Addition (axpby) as C++ lambda
void axpby (int N, double a, double* x,

double b, double* y) {
auto f = [=](i) {y[i] = a*x[i] + b*y[i];};

#pragma omp target teams distribute parallel for simd nowait firstprivate(f)
for(int i=0; i< N; i++) {

f(i);
}

}

A similar issue occurs with the use of OpenMP target regions inside class
member functions. When the axpby is implemented as a class member function,
where N is a class data member, performance drops even more than with the use
of lambdas, compared to creating a local copy of N inside the member function.

Figure 1 shows the performance of the different versions of axpby discussed
above. The figure shows 5 versions AXPBY, where the labels on the legends
represent the following:
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Fig. 1. AXPBY on NVIDIA A100 with LLVM and NVHPC compilers and on AMD
MI250x with LLVM and ROCM compilers. Y axis is in GB/s, so higher is better.

1. KK-CUDA : Kokkos version with the CUDA backend
2. KK-OMP : Kokkos version with the OpenMPTarget backend
3. OMP-lambda : Direct OpenMP version using lambda inside a target region
4. OMP-raw : Direct OpenMP version not using lambda inside a target region
5. OMP-class : Variant of OMP-raw version using a class member inside the

target region, instead of its equivalent local copy.

For this kernel, we see that the direct OpenMP code when compiled with the
vendor compilers can achieve almost the same performance as Kokkos with the
native CUDA/HIP backends. At larger vector lengths, the Kokkos OpenMP-
Target backend approaches the raw OpenMP performance, and most of the
difference can be explained by the previously noted issues around the use of
Lambdas. However, NVHPC does not exhibit the lambda specific performance
penalty, and the Kokkos OpenMPTarget backend in each case achieves the same
performance as the lambda OpenMP implementation. Comparing the relative
performance of the different implementations on the two different architectures,
they appear to be a function of the compiler rather than the hardware.

2.2 DOT

The dot product (dot) function performs a single reduction on a given data type.
In Kokkos this operation is expressed using the parallel_reduce pattern as
shown in Listing 1.6. The equivalent direct OpenMP code is shown in Listing 1.7.

Listing 1.6. Kokkos Reduction (dot)
double dot(Kokkos::View <double*> x, Kokkos::View <double*> y) {

double result = 0.;
Kokkos:: parallel_reduce("DOT", x.extent (0), KOKKOS_LAMBDA(const int i,

double &lsum) {
lsum += x(i) * y(i);

}, result);
return result;

}



The Kokkos OpenMPTarget Backend 105

Listing 1.7. OpenMP Reduction (dot)
void dot (int N, double* x, double* y) {

double result = 0.;
#pragma omp target teams distribute parallel for simd reduction (+: result)

is_device_ptr(x,y)
for(int i=0; i< N; i++) {

result += x[i] * y[i];
}
return result;

}
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Fig. 2. DOT on NVIDIA A100 with LLVM and NVHPC compilers and on AMD MI250x
with LLVM and ROCM compilers. Y axis is GB/s, so higher is better.

Figure 2 shows the bandwidth achieved by the dot kernel, with legend labels
following the naming in Fig. 1. Only ROCM achieves the same performance as
the native backends of Kokkos, and only in the absence of lambdas which oth-
erwise reduce performance by 4-8x depending on the vector length. Here LLVM
and NVHPC are not sensitive to the use of Lambdas. Still, with OpenMP, they
only achieve between 30% and 70% of the performance of the native backends.
Unlike the axpby results, NVHPC with OpenMP only reaches about 50% of the
CUDA backend performance. A 2022 paper documenting the current design of
the LLVM OpenMP runtime [4] remarks that recent improvements of that run-
time have not included any work on better implementations of GPU reductions,
but our understanding is that some vendors are working on this topic.

2.3 SPMV

The third algorithm needed for CG-Solve is a sparse-matrix vector multiply.
Numerous sparse matrices representations exist. Here we employ the common
compressed sparse row (CSR) representation, which comprises an array storing
the non-zero values of the matrix, an array with the associated column indicies,
and a vector storing the row offsets into the value and column index arrays.
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At its simplest the spmv can then be implemented as loop over rows, with a
nested reduction to compute the dot product of each row. Listing 1.8 provides
a simple implementation of the spmv algorithm.

Listing 1.8. Sparse matrix vector multiply (spmv) sequential algorithm
for(row = 0; row < num_rows; row++) { // Loop over all rows

row_start = row_offsets[row];
row_end = row_offsets[row +1];
// Reduction over non -zeros in each row
for(idx = row_start; idx <row_end; idx++)

y(row) += m_values[idx] * x[m_cold_idx[idx]];
}

This operation is more complex than either axpby or dot since for good per-
formance on GPUs, nested parallelism must be exploited. The nested parallelism
exposes more concurrency in the algorithm, which becomes more important with
increasing number of non-zeros per row. Since the inner loop’s trip count depends
on the outer loop’s iteration index, they can not be easily collapsed. Further-
more, the kernel exhibits a mix of streaming and irregular data access. The
matrix data is accessed continuously, while accesses of the x vector are irregular.

While the basic spmv algorithm requires only two loops, In practice Kokkos
implements a somewhat more complex version using three levels of parallelism to
expose appropriate amounts of work for each level of the GPU hierarchy. Often
the number of non-zeros per row, and thus the inner loop length, is fairly small.
Thus it is beneficial to use only the third and innermost level of parallelism
to perform the reduction, but to still group adjacent rows in threads sharing a
common cache, to exploit data access locality of the vector x.

Both Kokkos and the OpenMP specification support three levels of paral-
lelism using the concepts of teams, threads and vector parallelism. Kokkos pro-
vides special execution policies with the execution patterns, namely TeamPolicy,
TeamThreadRange, and ThreadVectorRange. OpenMP expresses the same con-
ceptual ideas with the teams distribute, parallel for, and simd constructs.
Both Kokkos and many OpenMP compilers are consistent in mapping the first
level of parallelism across streaming multiprocessors (SMs) or compute units
(CUs) and the second level of parallelism within SMs or CUs.

Differences between Kokkos and many OpenMP compilers arise regarding
the third level of parallelism (or lack thereof). While conceptually the single
instruction multiple data (SIMD) model of lock-step execution exemplified by
CPU vectorization is stricter than the single instruction multiple threads (SIMT)
model of GPUs, SIMD can be profitably mapped onto SIMT and indeed lockstep
execution at the lowest level of the GPU’s hierarchy can be the most performant.
However, the LLVM compiler, and many vendor compilers, including NVHPC
and ROCM, treat OpenMP’s simd as a hint, and do not map it to hardware
parallelism. All threads in a GPU CUDA block or HIP group are instead acti-
vated together as part of the parallel for construct. This restriction, for now,
limits the performance for any Kokkos application that uses the third paral-
lel level explicitly. Moreover, the third level of parallelization enables efficient
memory coalescing on GPU architectures that Kokkos works to exploit. When
that third level of parallelism is not present, the memory references are not coa-
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lesced, resulting in inefficient access patterns. That said, a dedicated three level
mapping honoring the simd construct is currently under development as part of
LLVM.

Listing 1.9. Kokkos Hierarchical Parallelism for spmv
Kokkos:: parallel_for(
"SPMV", Kokkos::TeamPolicy <>(num_teams , team_size , vector_size),
KOKKOS_LAMBDA(const Kokkos:: TeamPolicy <>:: member_type &team) {

const int64_t first_row = team.league_rank () * rows_per_team;
const int64_t last_row = first_row + rows_per_team < nrows

? first_row + rows_per_team
: nrows;

// iterate over rows owned by this team
Kokkos:: parallel_for(

Kokkos:: TeamThreadRange(team , first_row , last_row),
[&]( const int64_t row) {

const int64_t row_start = A.row_ptr(row);
const int64_t row_length =

A.row_ptr(row + 1) - row_start;

double y_row;
// reduction over non -zeroes in the row
Kokkos:: parallel_reduce(

Kokkos:: ThreadVectorRange(team , row_length),
[=]( const int64_t i, double &sum) {

sum += A.values(i + row_start) *
x(A.col_idx(i + row_start));

},
y_row);

y(row) = y_row;
});

});

Listing 1.9 shows the implementation of SPMV using hierarchical execu-
tion patterns in Kokkos. The Kokkos::TeamPolicy is used to specify the num-
ber of teams, team size and the number of vector lanes used per thread. For
this algorithm the team size and the vector length are optimization parameters
that require tuning for each hardware platform. When using the CUDA or HIP
backend, each team is mapped to a block, with the thread identifiers in each
team mapped to threadIdx.y and vector lanes mapped to threadIdx.x. Vec-
tor lengths are limited by the warp or wavefront size respectively. In the spmv
algorithm, each team is assigned a number of rows, which are then iterated over
in parallel by the threads of the team. The nested reduction is performed by the
vector lanes associated with each thread.

A direct mapping of the Kokkos semantics to OpenMP leads to an imple-
mentation as shown in Listing 1.10 In Kokkos, the loop body of the outer loop
is executed by all threads within the team. This is achieved in OpenMP by a
parallel region inside the outer loop. Now every thread computes redundantly
first row and last row, avoiding an otherwise necessary broadcast upon enter-
ing the nested parallel loop. The nested reduction is annotated with the simd
directive. As stated above, none of the compilers used for this work actually
parallelize the simd loop for a GPU. In order to identify how much of a perfor-
mance reductions is caused by that lack of parallelization we also ran the native
CUDA/HIP Kokkos backend code with a vector-size of one.

There are other idioms of hierarchical parallelism where there is a mismatch
of Kokkos and OpenMP semantics. Though not illustrated in CG-solve, Kokkos
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allows a team level reduction over a variable that is introduced within the team.
The semantics are that each thread has copy of the variable that is initialized to
the identity at the start of the reduction operation, and the final partial values
of all copies are combined and the resulting value redistributed to all threads’
copies at the end of the reduction operation. In contrast, OpenMP reduction
semantics require that the reduction variable must be shared by the threads in a
team and hence it must be known at the start of the parallel region. However,
in some use cases, it may not be possible to identify such reductions at the start
of the parallel region, since the nested reduction may occur in other functions.

Listing 1.10. OpenMP Hierarchical Parallelism spmv - Version A
int num_teams = (nrows + rows_per_team - 1)/rows_per_team;
#pragma omp target teams distribute is_device_ptr(x,y,A_row_ptr ,A_values ,

A_col_idx)
for(int team = 0; team < num_teams; ++i)
#pragma omp parallel
{

const int64_t first_row = omp_get_team_num () * rows_per_team;
const int64_t last_row = first_row + rows_per_team < nrows ? first_row +

rows_per_team : nrows;
#pragma omp for
for(int row = first_row; row < last_row; ++row)
{

const int64_t row_start = A_row_ptr[row];
const int64_t row_length = A_row_ptr[row + 1] - row_start;

double y_row;
#pragma omp simd reduction (+: y_row)
for(int i = 0; i < vector_size; ++i)
{

y_row += A_values[i + row_start] * x[A_col_idx[i + row_start ]];
}
y[row] = y_row;

}
}

Listing 1.11. OpenMP Hierarchical Parallelism spmv - Version B
#pragma omp target teams num_teams(leage_size) thread_limit(team_size)

is_device_ptr(x,y,A_row_ptr ,A_values ,A_col_idx)
#pragma omp parallel

{
const int blockIdx = omp_get_team_num ();
const int gridDim = omp_get_num_teams();

for (int league_id = blockIdx; league_id < num_teams; league_id +=
gridDim) {

#pragma omp for
for(int row = first_row; row < last_row; ++row)
{

// similar to above
}

}
}

The native Kokkos backends implement the team level reduction using a
memory buffer in device memory. Due to the mismatch in Kokkos and OpenMP
semantics, this approach is also currently used for the OpenMPTarget backend.
This workaround requires explicit control of the number of active teams using the
num teams clause to ensure that the correct amount of buffer space is allocated.
Unfortunately adding that clause reduces the performance of Kokkos hierarchical
parallelism on some compilers, even in the cases, such as spmv, where team level
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reductions are not present. We measured the impact of adding the num teams
clause for spmv in our experiments.

We also considered an alternative implementation strategy of Kokkos’ hier-
archical parallelism without the distribute construct that performs better in
many cases. This strategy requires the loop over worksets to be a nested loop
inside the target region as shown in Listing 1.11. Currently this approach is
the default implementation strategy for the Kokkos OpenMPTarget backend on
NVIDIA and AMD GPUs. However, different combinations of architecture and
compiler can vary in their preference for implementations similar to Listing 1.10
or Listing 1.11, as our experiments will illustrate.

Figure 3 shows the performance of spmv on NVIDIA A100 and AMD MI250x
GPUs. The labels for the legends of Fig. 3 represent the following:

1. KK-CUDA 3 levels - Kokkos version with CUDA backend, using all 3 levels
of hierarchical parallelism

2. KK-CUDA 2 levels - Kokkos version with CUDA backend, using only 2 levels
of hierarchical parallelism. (Set vector_size=1 for ThreadVector level.)

3. KK-OMP-a - Kokkos version with OpenMPTarget backend, implementing
hierarchical parallelism similar to Listing 1.10

4. KK-OMP-b - Kokkos version with OpenMPTarget backend, implementing
hierarchical parallelism similar to Listing 1.11.

5. w/o num teams - allow the compiler to choose the number of teams
6. OMP - direct (non-Kokkos) OpenMP implementation

As with the previous algorithms, KK-CUDA/KK-HIP performance is signif-
icantly greater than any of the OpenMP variants. How, much however depends
on the compiler, the hardware, and the specific variant of the OpenMP code.
The experiment highlights the sensitivity of the OpenMP performance to specific
implementation choices, with different choices resulting in better performance on
different hardware and compiler combinations.

For example, consider the two compiler versions on NVIDIA’s A100. Using
LLVM compiler the native OpenMP version and the KK-OMP-B version without
the num_teams clause come closest to the performance of the native backends,
achieving approximately 70% of the KK-CUDA-3-level bandwidth. These opti-
mized OpenMP versions using LLVM on A100 achieve performance similar to
their equivalent native KK-CUDA-2-level version. In comparison, the KK-OMP-
A version using LLVM shows a 25% performance gap, and this regression has
been observed in other applications as well. The NVHPC compiler also prefers
the KK-OMP-B style of parallel decomposition, and unlike LLVM it benefits
immensely from the use of num_teams clause. Additionally in this combination
of architecture and compiler versions, all OpenMP versions underperform com-
pared to the equivalent native KK-CUDA-2-level version.

On AMD GPUs, even the 2-level native version significantly underperforms
compared to the 3-level native version, highlighting the performance benefits
that can be achieved by exploiting all 3 levels of hierarchical parallelism. Among
the OpenMP versions, KK-OMP-A outperforms KK-OMP-B on both compilers.
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Fig. 3. SPMV on NVIDIA A100 with LLVM and NVHPC compilers and on AMD
MI250x with LLVM and ROCM compilers. Y axis is GB/s, so higher is better.

The performance differences observed in this study make it difficult to maintain
OpenMP code with consistent performance across different platforms.

The performance of the CG-Solve application as a whole is dominated by
the performance of the SPMV kernel. Running the CG-Solve example with the
OpenMPTarget backend of Kokkos without making any optimizations specific
to CG-solve itself brings the performance close to 50% of the native backends.

3 Beyond the Basics

Besides the initial issues mapping Kokkos to OpenMP already discussed above,
there are a number of other challenges that we outline briefly in this section.
These challenges did not impact the CG-Solve example, but are of great concern
when implementing more complex applications.

3.1 Scratch Memory

Kokkos’ hierarchical parallelism provides the ability to allocate team and thread
private scratch pads, which act as fast user-managed cache. These scratch pads
can be mapped to CUDA and HIP shared memory, and generally are useful for
cooperative work within a thread team. In principle the OpenMP specification
has the concept of allocators which conceivably would be able to address part
of the problem. However, currently this is not implemented by most compilers.
Furthermore, in order to leverage aforementioned CUDA and HIP shared mem-
ory, the allocation size needs to be specified upon entry into a target region,
something for which the OpenMP specification does not provide a mechanism.

3.2 Concurrency

Another capability in Kokkos which is difficult to reliably implement is querying
available device concurrency. As mentioned in Sect. 2.3, there is a need to have
tight control over the number of teams generated in order to support TeamThread
level reductions in Kokkos. However we also do not want to restrict the paral-
lelism that can be exploited by a compiler. A trade-off between the two con-
straints is to calculate the maximum number of in-flight teams possible on a
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given architecture based on the team size requested. This approach requires
information about the number of execution resources available. Currently the
backend uses a mix of hardware knowledge, OpenMP routines when applicable
and an educated guess to determine this number since there is no single solution
that reliably works on every applicable architecture-compiler combination.

One candidate solution is the omp_get_num_procs() routine. Because the
routine returns the number of processors available on the current device, when
called from the host it cannot provide information about concurrency on other
devices. We suggest extending its functionality to take a device number as an
argument and return the number of available processors on the device identi-
fied by that device number. A potential workaround is to open an empty target
region at the start of the program only to call omp_get_num_procs() within it.
Unfortunately, we have observed that the number returned by the routine when
called from an accelerator device is not a consistent representation of the underly-
ing hardware concurrency across implementations. Some implementations even
return just 1 if the target region body contains only the call to that routine,
because they try to optimize the amount of execution resources to match the
computation in the target region.

Another use of device concurrency information in Kokkos is to support its
UniqueToken feature, a locking mechanism that allows a caller to acquire a
unique index. Ideally the number of unique index entries should match the num-
ber of execution resources. Otherwise, an arbitrarily large number of such unique
indices must be created, which may not be practically useful.

Currently extensions to query device concurrency exist that are specific to
some vendors, but we are not aware of a portable solution. We hope to converge
onto a single cohesive and portable solution on this issue through collaboration
with vendors and the community.

4 Conclusion

In this paper we have described mapping the Kokkos Performance Portability
model to OpenMP for GPUs. Using a simple linear solver we have explored the
state of the Kokkos OpenMPTarget backend on NVIDIA and AMD GPUs with
multiple compilers. We find that the OpenMPTarget backend provides signifi-
cantly less performance than the architecture specific CUDA and HIP backends,
due to a mix of compiler implementation issues and limitations in the speci-
fication. On average the OpenMP variants (including Kokkos OpenMPTarget
backend and raw OpenMP code) provide 57% of the CUDA and HIP backend
performance, but at its worst it is about 30x slower than the HIP backend. The
performance of the OpenMP implementation is very sensitive to particular con-
struct choices, but the effect of these choices depends on both hardware and
compiler. It is thus difficult to write and maintain code which performs con-
sistently across different platforms. Extending OpenMP testing and verification
suites to include performance testing across different hardware and compilers
could help improve this situation, identify regressions in implementations and
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help develop best practices. We acknowledge that the current state of OpenMP
offloading for GPUs represents an improvement from the past, when performance
and even basic portability had been universally poor even for simple loops. We
look forward to future enhancements in the specification and improvements in
compiler/runtime implementations, which are becoming more commonplace as
a result of collaborations between vendors and the community to address the
challenge of performance portability.
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