
Fast tree-based algorithms for DBSCAN for low-dimensional data
on GPUs

Andrey Prokopenko
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
prokopenkoav@ornl.gov

Damien Lebrun-Grandié
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
lebrungrandt@ornl.gov

Daniel Arndt
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

arndtd@ornl.gov

ABSTRACT

DBSCAN is a well-known density-based clustering algorithm to
discover arbitrary shape clusters. While conceptually simple in se-
rial, the algorithm is challenging to efficiently parallelize on many-
core GPU architectures. Common pitfalls, such as asynchronous
range query calls, result in high thread execution divergence in
many implementations. In this paper, we propose a new frame-
work for GPU-accelerated DBSCAN, and describe two tree-based
algorithms within that framework. Both algorithms fuse the search
for neighbors with updating cluster information, but differ in their
treatment of dense regions of the data. We show that the time taken
to compute clusters is at most twice that of determination of the
neighbors. We compare the proposed algorithms with existing CPU
and GPU implementations, and demonstrate their competitiveness
and performance using a fast traversal structure (bounding volume
hierarchy) for low dimensional data. We also show that the memory
usage can be reduced by processing object neighbors dynamically
without storing them.

CCS CONCEPTS

• Computing methodologies→ Parallel algorithms.

KEYWORDS

DBSCAN, bounding volume hierarchy, parallel algorithm, GPU
ACM Reference Format:

Andrey Prokopenko, Damien Lebrun-Grandié, and Daniel Arndt. 2023. Fast
tree-based algorithms for DBSCAN for low-dimensional data on GPUs.
In 52nd International Conference on Parallel Processing (ICPP 2023), August
07–10, 2023, Salt Lake City, UT, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3605573.3605594

1 INTRODUCTION

Clustering is a data mining technique that splits a set of objects into
disjoint classes (clusters), each containing similar objects. Dbscan
(Density-Based Spatial Clustering of Applications with Noise) [11]

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the U.S. Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a nonexclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00
https://doi.org/10.1145/3605573.3605594

is a density-based clustering algorithm. It is useful when the number
of clusters or their shape is not known a priori. It is used in a diverse
set of applications such as bioinformatics, noise filtering and outlier
detection, cosmology, image segmentation, and others.

The Dbscan algorithm requires the identification of close neigh-
bors for each data point. Its breadth-first search nature makes
parallelization a challenge. Major progress occurred in the last
two decades, starting from the master-slave [3, 43] and MapRe-
duce [9, 19] approaches, and transitioning to using shared mem-
ory [17, 23, 31, 32, 40] and GPU [2, 6, 14, 15, 25, 30, 34, 38, 41, 42]
implementations, and even approximate algorithms [8, 12, 26, 33].
Using the Union-Find technique for cluster labeling, introduced
in [32], was a particularly important breakthrough as it funda-
mentally changed the nature of the algorithm, breaking with its
breadth-first search origins.

In this work, we first introduce a general parallel algorithm with
sufficient degree of parallelism for thousands of cores available on
GPUs. All components of the algorithm are executed on a GPU.

We then propose two concrete implementations. We prioritize
using an indexing structure with a fast batched neighborhood
search to maintain algorithm performance. Specifically, we use
a bounding volume hierarchy (BVH), a structure predominantly
used in computer graphics for ray tracing [27]. We combine it with
a synchronization-free union-find technique introduced in [21].
Our approach allows processing the found neighboring points on-
the-fly, reducing the overall memory consumption of the limited
GPU memory. We introduce several traversal optimization tech-
niques and reduce the number of distance calculations used by
the algorithm in dense regions. We show significant performance
improvements over available multi-threaded CPU and GPU Db-
scan implementations. Since the local Dbscan implementation is
an inherent component of a full distributed algorithm, the proposed
algorithm can be easily plugged into most distributed frameworks
to improve the overall performance.

This paper focuses on the low-dimensional (e.g., spatial) data for
two reasons. First, this work was motivated by scientific simula-
tions, such as cosmology. The data in these simulation is commonly
low-dimensional (e.g., 3D), and the main challenge lies in its size,
reaching 500 million data points for a single GPU (with a full simula-
tion requiring hundreds or thousands of GPUs). Given that the data
is often analyzed in-situ, it is imperative for the underlying algo-
rithm to be fast. Second, an implementation of a tree-based indexing
structure for high dimensions on an accelerator such as GPU is a
challenging task in itself, as the “curse of dimensionality” creates
challenges for the popular data structures used for low-dimensional
data [5].

Our key contributions are:

503

https://orcid.org/0000-0003-3616-5504
https://orcid.org/0000-0003-1952-7219
https://orcid.org/0000-0001-8773-4901
https://doi.org/10.1145/3605573.3605594
https://doi.org/10.1145/3605573.3605594
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605573.3605594&domain=pdf&date_stamp=2023-09-13

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Prokopenko et al.

• We reformulate the Dbscan algorithm to expose more paral-
lelism required for an efficient GPU implementation.
• We use BVH as the search index, selected for its high effi-
ciency on GPUs.
• We develop a new way to reduce the number of calculations
in the dense data regions through including dense cells into a
hybrid BVH hierarchy together with sparse data, combining
the benefits of both search index and grid-based methods.
• We provide the first performance portable algorithm and im-
plementation for the Dbscan, and provide a comprehensive
set of experiments on three architectures (AMD EPYC 7763
CPU, Nvidia A100 GPU, AMD MI250X GPU).

The remainder of the paper is organized as follows. Section 2
introduces the Dbscan algorithm and related work. Section 3 de-
scribes a general framework for a GPU Dbscan implementation
allowing for fine-grained parallelism. In Section 4, we describe two
tree-based algorithms within that framework. Finally, we demon-
strate the algorithm performance and performance portability in
Section 5 and derive our conclusions and future work in Section 6.

2 BACKGROUND

2.1 DBSCAN algorithm

We briefly outline the Dbscan algorithm in this Section, referring
the readers to [11] for more details.

Let 𝑋 be a set of 𝑛 points to be clustered. For a point to be in a
cluster, the density in its neighborhood has to exceed some thresh-
old, i.e., its neighborhood has to contain at least a minimum number
of points. This is formalized using two user-provided parameters:
minPts ∈ N+ and 𝜀 ∈ R+.

An 𝜀-neighborhood of a point 𝑥 is defined as 𝑁𝜀 (𝑥) =
{
𝑦 ∈ 𝑋 |

𝑑𝑖𝑠𝑡 (𝑥,𝑦) ≤ 𝜀
}
, with 𝑑𝑖𝑠𝑡 (·, ·) being a distance metric for the set

𝑋 (e.g., Euclidean). The minPts parameter defines the minimum
number of points for a point to be considered inside a cluster, and
a point 𝑥 is called a core point if |𝑁𝜀 (𝑥) | ≥ minPts. A point 𝑦 is
directly density-reachable from a point 𝑥 if 𝑥 is a core point and
𝑦 ∈ 𝑁𝜀 (𝑥). A point 𝑦 is density-reachable from a point 𝑥 if there
is a chain of points 𝑥1, . . . , 𝑥𝑛 , 𝑥1 = 𝑥 , 𝑥𝑛 = 𝑦, such that 𝑥𝑖+1 is
directly density-reachable from 𝑥𝑖 . Points 𝑥 and𝑦 are called density-
connected if there exists a point 𝑧 in 𝑋 such that both 𝑥 and 𝑦 are
density-reachable from 𝑧. Finally, a point 𝑥 is called a border point
if it is density-reachable from a core point, but is not a core point
itself. The points that are not core or border points are called noise
and are considered to be outliers not belonging to any cluster. Any
cluster then consists of a combination of core points (at least one)
and border points (possibly, none). Note, that as a border point may
be density-reachable from multiple core points, it could potentially
belong to multiple clusters. Implementations of the algorithm may
differ in their handling of such border points, but typically assign
them to a single cluster.

The special case of minPts = 2 (sometimes called Friends-of-
Friends in the cosmology literature) is equivalent to finding strongly
connected components in the adjacency graph 𝐺 = (𝑉 , 𝐸), where
𝑉 = 𝑋 and two vertices 𝑥 and 𝑦 have an (undirected) edge between
them if 𝑑𝑖𝑠𝑡 (𝑥,𝑦) ≤ 𝜀. In this case, there are no border points, and
a point either belongs to a cluster as a core point, or is in the noise.

Algorithm 1 Dbscan algorithm
1: procedure Dbscan(𝑋,minPts, 𝜀)
2: for each unvisited point 𝑥 ∈ 𝑋 do

3: mark 𝑥 as visited
4: 𝑁 ← GetNeighbors(𝑥, 𝜀)
5: if |𝑁 | < minPts then
6: mark 𝑥 as noise
7: else

8: 𝐶 ← {𝑥 }
9: for all 𝑦 ∈ 𝑁 do

10: 𝑁 ← 𝑁 \𝑦
11: if 𝑦 is not visited then

12: mark 𝑦 as visited
13: 𝑁̄ ← GetNeighbors(𝑦, 𝜀)
14: if |𝑁̄ | ≥ minPts then
15: 𝑁 ← 𝑁 ∪ 𝑁̄

16: if 𝑦 is not a member of any cluster then
17: 𝐶 ← 𝐶 ∪ {𝑦}

The pseudocode for the Dbscan algorithm is shown in the Al-
gorithm 1. The algorithm starts at an arbitrary point 𝑥 ∈ 𝑋 , com-
puting its 𝜀-neighborhood 𝑁 (line 4). If 𝑥 is not a core point, i.e.
|𝑁 | < minPts, 𝑥 is tentatively marked as noise (line 6), and another
point is chosen. Otherwise, the algorithm constructs a new cluster
𝐶 by incrementally adding points that are density-reachable from
𝑥 in a breadth-first search manner (lines 8-17), including the points
that may have been previously marked as noise. Border points
are assigned to the first encountered cluster that they are density-
reachable from. The algorithm has a computational complexity of
𝑂 (𝑛2), or𝑂 (𝑛 log𝑛) if a spatial indexing structure (e.g., k-d tree [4]
or R-tree [16]) is used.

Dbscan* proposed in [7] simplified the algorithm by removing
the notion of border points completely, thereby improving consis-
tency with the statistical interpretation of clustering. While not
addressed in this work, the algorithms proposed in this paper can
be easily adapted for Dbscan*, with several further optimizations
possible.

2.2 Related work

Many papers detail parallelization techniques in distributed [17, 19,
20, 31, 32, 41–43] and shared memory [23, 31, 32, 40] contexts. Here,
we focus on the works addressing the algorithm parallelization
using GPUs.

[6] proposed two algorithms. CUDA-DClust creates sub-clusters
(chains) of points density-reachable from each other. Multiple
chains are created simultaneously in parallel on a GPU. The al-
gorithm keeps track of chain collisions through a collision matrix,
which is resolved on the CPU in the final stage. CUDA-DClust*
is an extension of CUDA-DClust that uses an indexing technique
(based on a constant number of directory level partitions) for the
computation of 𝑁𝜀 (𝑥). Two slight modifications of CUDA-DClust,
reducing the number of memory transfers between a CPU and a
GPU, and identifying core points prior to cluster generation, were
proposed in Mr. Scan [42]. [38] offloads the 𝑁𝜀 (𝑥) computation
to the GPU by assigning points in 𝑋 to different threads, which
check the distance to 𝑥 in parallel. G-DBSCAN [2] constructs the
adjacency graph using an all-to-all computation on the GPU, and

504

Fast tree-based algorithms for DBSCAN for low-dimensional data on GPUs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

then executes a parallel breadth-first search with level synchroniza-
tion. An extension of CUDA-DClust is realized in CudaSCAN [25],
which trims the amount of required distance evaluations by parti-
tioning a data set into subregions and performing local clustering
within the sub-regions in parallel. A special case of Dbscan with
minPts = 2 was studied in [35], where an implicit graph structure
combined with a disjoint-set algorithm was used to find strongly
connected components utilizing a cell partitioning of the domain as
an indexing structure. [14] utilizes a hybrid CPU-GPU approach in
which the neighbors of each point are first identified on the GPU,
then the neighbor list is transferred to the host, where the clus-
tering is performed. In [29], the authors compared existing GPU
implementations (the algorithm in [38], CUDA-DClust* [6] and
G-DBSCAN [2]), and found G-DBSCAN to be the fastest but re-
quiring significantly more memory (166× of CUDA-DClust) due to
storing the adjacency graph. [13] extended the work [14], address-
ing the limitations of the GPU memory by using a batched mode
to incrementally compute 𝑁𝜀 (𝑥), and explored avoiding distance
calculations in the dense regions by superimposing a regular grid
over the domain, with a special treatment of the cells containing at
leastminPts points, called dense cells. CUDA-DClust+ of [34] further
improved CUDA-DClust by reducing the amount of CPU-GPU com-
munications and moving more kernels to GPU. A new approach to
implement DBSCAN using Nvidia RTX (ray-tracing hardware) was
proposed in [30], improving performance for low-density datasets.

This work shares similarities with several of the mentioned
algorithms. Similar to [2], our algorithm operates on the adjacency
graph. However, in this work, the graph is implicit and is never
fully formed, resolving many of the memory constraints of the
algorithm identified in [29]. Compared to [35], which can be seen
as a precursor, this work implements the full DBSCAN algorithm,
uses a synchronization-free non-iterative union-find algorithm, and
uses and optimizes a tree-based different indexing structure. Like
in this work, [14] identified batched neighbor search as a key to
performance; however, that approach produced a full adjacency
graph and relied on CPU for the clustering itself. We follow the
ideas introduced in [13, 35, 36, 42], and utilize an auxiliary regular
grid to reduce the number of distance calculations. Compared to the
mentioned works, however, the cells of the grid become primitives
used in the construction of the tree, both reducing the size of the tree,
and allowing for an easier merge of dense cells. Finally, compared
to most of the works mentioned, the algorithm only uses the GPU
with no support from a CPU, requiring no data transfer between
host and device memories during the execution.

3 PARALLEL DBSCAN FRAMEWORK FOR

GPUS

3.1 Disjoint-set based DBSCAN

The main obstacle to the parallelization of the Dbscan algorithm
in the original form (Algorithm 1) is its breadth-first manner of
encountering new points, and the linear time required to update the
existing neighbor set𝑁 . The algorithm proposed in [32] breaks with
its breadth-first nature, and serves as the foundation for this work.
Instead ofmaintaining an explicit list of indices, the authors used the
Union-Find [37] approach to maintain a disjoint-set data structure.
The approach relies on two main operations: Union and Find.

Find(𝑥) determines the representative of a set that a point 𝑥 belongs
to, while Union(𝑥,𝑦) combines the sets that 𝑥 and 𝑦 belong to.

The Union-Find algorithm is typically implemented using trees.
For any point 𝑥 , its representative, returned by Find(𝑥), is the root
of the tree containing 𝑥 . The Union(𝑥,𝑦) operation merges two
trees (containing 𝑥 and𝑦) by pointing the parent pointer of one tree
root (e.g., Find(𝑥)) to the other (Find(𝑦)). If 𝑥 and 𝑦 belong to the
same set, then Find(𝑥) and Find(𝑦) return the same index, and no
merging is required. The procedure starts with creating a forest of
singleton non-overlapping trees, each corresponding to a set con-
sisting of a single data point. The method proceeds by progressively
combining pairs of sets through merging corresponding trees.

From an implementation perspective, the trees in the Union-
Find algorithm are stored using a flat array, whichwewill refer to as
labels. A parent of a node in a tree is then the value of the label cor-
responding to that node. The Find operation follows the values of
labels until encountering an index that is the same as its label, which
indicates that it is the root of that tree. Two trees are merged by
changing the label of the root of one of the trees to that of the other.

Algorithm 2 Disjoint-set Dbscan algorithm
1: procedure DSDbscan(𝑋,minPts, 𝜀)
2: for each point 𝑥 ∈ 𝑋 do

3: 𝑁 ← GetNeighbors(𝑥, 𝜀)
4: if |𝑁 | ≥ minPts then
5: mark 𝑥 as core point
6: for each 𝑦 ∈ 𝑁 do

7: if 𝑦 is marked as a core point then
8: Union(𝑥, 𝑦)
9: else if 𝑦 is not a member of any cluster then
10: mark 𝑦 as a member of a cluster
11: Union(𝑥, 𝑦)

Algorithm 2 reproduces the disjoint-set Dbscan (DSDbscan)
algorithm as proposed in [32] (Algorithm 2), shown here for com-
pleteness. Each point now only computes its own neighborhood
(Line 3). If it is a core point, its neighbors are assigned to the same
cluster (Lines 8 and 11).

In the original paper, a thread or an MPI rank executed the algo-
rithm sequentially for a subset of data constructed by partitioning,
and merged the results in parallel to obtain the final clusters. For
GPUs, however, more available parallelism is desired to improve
the efficiency. In the next Section, we reformulate the algorithm to
allow that.

3.2 Parallel disjoin-set based DBSCAN

While the amount of the parallelism in Algorithm 2 may be suf-
ficient for shared- or distributed-memory implementations, it is
insufficient for GPU implementations with thousands or tens of
thousands threads. Therefore, our goals were to reformulate the
algorithm to accommodate such a high number of threads, and to to
reduce thread execution divergence (executing different code) and
data divergence (reading or writing disparate locations in memory)
in the algorithm.

Algorithm 2 consists of two distinct kernels: the neighbor search,
and the disjoint-set structure update. It is clear that the former is
more computationally demanding than the latter. Without taking

505

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Prokopenko et al.

appropriate care, calling GetNeighbors asynchronously by differ-
ent threads will result in high execution and data divergence. This is
especially true when an index structure, such as k-d tree or R-* tree,
is used. Thus, the neighbor searches are executed simultaneously
for all points in a batched mode.

We next address the limited amount of available GPU memory.
Storing all the neighbors found on Line 3 for all threads executed at
the same time may not be possible, given that the number of such
neighbors may be a significant fraction of the overall dataset size.
This can be addressed by observing that the neighbor list is being
used in two different contexts. For assessing whether a point is a
core point on Line 4, the only information required is the number of
neighbors, but not the neighbors themselves. In the loop on Line 6,
the neighbors are assigned to the same cluster as part of the Union-
Find algorithm. The key observation here is that the neighbors
may be processed independently and in any order. In other words,
it is possible to process them as they are determined and execute
the Union operation on-the-fly for each neighbor, discarding the
found neighbor after that.

Given these findings, we split the algorithm into two phases. In
the first phase, called preprocessing, the algorithm determines the
core points. We note that while it is possible to do this by computing
the exact number of neighbors |𝑁𝜀 (𝑥) |, it is not necessary. If the
neighbors of a point are discovered incrementally (whether through
a tree traversal, or otherwise), it is sufficient to encounter justminPts
neighbors to determine a core point (unless executing a sweep over
multiple values of minPts).

The second phase, called main, proceeds with the knowledge
of core points, and executes Union(𝑥,𝑦) for each pair of close
neighbors as they are being discovered. This general formulation
leaves a lot of room for optimizations. For example, many of the
distance calculations may be eliminated. We examine this in more
detail in Section 4.

The two-phase approach results in dramatic reduction of the
consumed memory and in better avoidance of thread and data
divergence. The memory consumption does not depend on the
values of 𝜀 and minPts and is linear with respect to the number of
points in a dataset (assuming the used search index obeys this, too).
This makes it possible to execute the algorithm for much larger
datasets. As was observed in earlier works, algorithms that store full
neighbor lists (e.g., G-DBSCAN) tend to run out of memory even for
smaller datasets, particularly in situations where |𝑁𝜀 (𝑥) | ≫ minPts
for a significant fraction of points.

An additional advantage of the two-phase approach is that it
exposes edge-level parallelism in addition to the vertex-level par-
allelism. One could consider using multiple threads collaborating
on a single point, with each thread assigned one of the outgoing
edges in the adjacency graph. Such an approach would require im-
plementing a search index (tree or otherwise) with multiple threads
collaborating on a single search query.

The pseudocode for the parallel disjoint-set Dbscan
(PDSDbscan) algorithm is shown in Algorithm 3. The pre-
processing phase is executed on Lines 3-4. The check on Line 2
allows the preprocessing phase to be skipped in the special case
when minPts = 2. In this case, any pair of points found within
distance 𝜀 in the main phase is guaranteed to consist of core points.
The Union-Find algorithm is performed on Lines 8 and 11.

Algorithm 3 Parallel disjoint-set Dbscan algorithm
1: procedure PDSDbscan(𝑋,minPts, 𝜀)
2: if minPts > 2 then

3: for each point 𝑥 ∈ 𝑋 in parallel do

4: determine whether 𝑥 is a core point
5: for each pair of points 𝑥, 𝑦 such that 𝑑𝑖𝑠𝑡 (𝑥, 𝑦) ≤ 𝑒𝑝𝑠 in parallel

do

6: if 𝑥 is a core point then
7: if 𝑦 is a core point then
8: Union(𝑥, 𝑦)
9: else if 𝑦 is not yet a member of any cluster then
10: critical section:

11: mark 𝑦 as a member of a cluster
12: Union(𝑥, 𝑦)

The operations on Lines 11 and 12 must be executed in a single
critical section. If a thread is marking 𝑦 as a member of its own clus-
ter, no other thread is allowed to execute Union with 𝑦. Otherwise,
it may lead to the “bridging” effect, where a border point within
distance 𝜀 of two separate clusters may result in merging those
clusters together. In practice, it is possible to use the labels array
for both clustering information, and as an indicator for whether a
border point is a member of a cluster. In this approach, the check on
Line 9 compares the label of point 𝑦 with 𝑦. If they are identical, the
label is assigned the representative of 𝑥 . It allows us to replace the
critical section with a single atomic compare-and-swap operation.

In summary, the proposed approach allows execution of the full
Dbscan algorithm on a GPU fully in parallel. No data transfers
between a CPU and a GPU are necessary as long as both the data
and the chosen search index fit into the GPU memory.

4 TREE-BASED ALGORITHMS

4.1 FDBSCAN

FDbscan (“fused” DBSCAN) fuses tree traversal with the Union-
Find algorithm. It uses a bounding volume hierarchy (BVH), a
structure commonly used in computer graphics for ray tracing, for
the search index. While any tree can be used, BVH has been shown
to be very efficient for low-dimensional data on GPUs. Linear BVH
(LBVH) (e.g., [22]), are well suited for GPUs, with low data and
thread divergence during both construction and traversal.

The parallelization is done over all points of a dataset, with each
thread assigned a single point. The neighbor search is executed
in bulk (i.e., with all threads launching at the same time). The
threads are sorted using space-filling curve to reduce data and
execution divergence during the traversal. Each thread executes a
stack-less top-down traversal. In the preprocessing phase, we use
the recommendation from the previous Section, terminating the
traversal of a thread once a minPts neighbors are encountered. In
the main phase, the algorithm executes Union operation when a
new neighbor is found, without storing said neighbor.

We use an additional optimization in the main phase. In Algo-
rithm 3, the algorithm can be seen as operating on the edges of the
adjacency graph. As the results of Union(𝑥,𝑦) and Union(𝑦, 𝑥) are
identical from a cluster membership perspective, it is sufficient to
process each edge only once. To facilitate this, we introduced a new
hierarchy traversal algorithm. Given a thread corresponding to a

506

Fast tree-based algorithms for DBSCAN for low-dimensional data on GPUs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

0

3

4

1 2

5

6

0

3

4

1 2

5

6

0 1 2 3 4 5 6 7

Figure 1: An example of the tree traversal mask for a thread

corresponding to a point with index 4.

··
·· · ·

· ··
·

·· ·· · ·
· ·

·
··

· ·
·

·

·
· · ·· ·

· ·

Figure 2: Left: regular grid with grid size 𝜀/
√
𝑑 superimposed

over the dataset. The dense cells forminPts = 5 are shown in

red. Right: BVH constructed from a mixed set of objects.

point with index 𝑖 , a subtree corresponding to the leaf nodes with
indices less than 𝑖 is hidden from the thread. This way, the thread
avoids entering the subtrees with lower leaf indices, guaranteeing
that all the found neighbors would have indices 𝑗 > 𝑖 , thus guar-
anteeing that each pair of neighboring points is processed exactly
once. Figure 1 demonstrates the tree mask for a thread correspond-
ing to index 4. The thread would stay in the right subtree of the
root, skipping the left subtree entirely. The advantages of such an
approach include fewer memory accesses used during the traversal,
reduced number of distance computations, and reduced number of
Union-Find operations.

4.2 FDBSCAN-DenseBox

A given combination of minPts and 𝜀 often results in the number
of neighbors within an 𝜀-neighborhood of a point significantly
exceeding the value of minPts. In this case, many of the distance
computations may be avoided. In this Section, we propose an alter-
native approach to FDbscan which takes advantage of this fact.

Eliminating extra distance computations has been studied in [13,
42]. The methods operate by superimposing a uniform Cartesian
grid and processing cells with at leastminPts points more efficiently.
We integrated these ideas into a tree-based search index, which we
call FDbscan-DenseBox.

The procedure starts with computing the bounds of the data set
and imposing a regular grid over the computational domain. The
grid cell length is set to be 𝜀/

√
𝑑 , with 𝑑 being the data dimension.

This choice guarantees that the diameter of each cell does not exceed
𝜀. Next, we calculate a cell index for all points in the dataset, and
determine the number of points in each cell. The cells with at least
minPts are called dense. Figure 2 demonstrates a grid superimposed
over a set of points, with dense cells for minPts = 5 marked in red.
It is clear that all the points in the dense cells are core points, and

belong to the same cluster. Thus, the distance calculations among
the points in the same dense cell can be eliminated.

The number of dense cells and the number of points inside them
depend heavily on the dataset data distribution and the parameters
𝜀 and minPts. If the value of 𝜀 is small compared to the domain size,
the number of grid cells in each dimension may be in thousands
or more, resulting in billions of grid cells. The data is then spread
across a relatively small population of non-empty cells. Searching
for nearby cells in this situation becomes non-trivial. While it is
possible to do a series of binary searches over a list of cells to
produce a list of neighboring non-empty cells, in this work we use
an alternative approach.

To accommodate dense boxes, we modify the BVH construction
algorithm of FDbscan. In FDbscan-DenseBox, the hierarchy is
constructed out of a mix of points outside of dense cells and the
boxes of the dense cells. This is possible to do as the BVH only
requires bounding volumes for a set of objects. Thus, such mixing
does not impose any additional constraints. The use of this approach
with other trees, such as k-d tree, would pose more challenges.

Given the knowledge that all points in dense cells are core points,
only the points outside of dense cells have to be examined to iden-
tify the remaining core points in the preprocessing phase. For every
such point, the algorithm finds all nearby objects within distance 𝜀
using the BVH. If the found object is an isolated point, the neighbor
count is incremented by one. If it is a box (corresponding to a dense
cell), a linear search over all points in that cell is performed, incre-
menting the count each time a point is within distance 𝜀. Similar to
FDbscan, the neighbors are only counted until reaching theminPts
threshold, after which the procedure terminates.

At the beginning of the main phase, the Union operation is
executed for all points within the same dense cell. Then, the neigh-
borhood search is performed for all points in the dataset. During
the search, once an object within distance 𝜀 is found for an indi-
vidual point, one of two cases may happen. In the first case, the
found object is a dense box. In this case, it is sufficient to determine
whether a single point of that dense box is within distance 𝜀. A
thread checks the distances to all points in that dense cell linearly,
until either a point within 𝜀 is found, in which case Union() is
called, or all points are exhausted. In the second case, the found
object is another point (outside of any dense cell). As the newly
found point is within 𝜀, the usual resolution depending on the core
status of both points is executed.

One drawback of FDbscan-DenseBox, compared to FDbscan,
is its use of arithmetic operations (e.g., summation) when dealing
with the cell computations. These calculations may suffer from
a loss of precision in the situations where the value of 𝜀 is tiny
compared to the coordinates of the data points, potentially resulting
in erroneous results. This should be detected and guarded against in
an implementation. Alternatively, this could be addressed by using
a higher precision floating point numbers, or through hashing
techniques. FDbscan, on the other hand, only uses min and max
operations on the user data and does not have this limitation.

4.3 Union-Find

We chose the algorithm proposed in [21] as our Union-Find ap-
proach, being synchronization-free on GPUs. Like most efficient

507

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Prokopenko et al.

Table 1: Datasets and the default parameters

Name 𝑑 𝑛 Source Description Default parameters

𝜀 minPts Samples

2D-NGSIM 2 ∼12M [1] GPS loc 1.0 10 100K
2D-Porto 2 ∼81M [28] GPS loc 0.005 10 100K
2D-SS-simden 2 10M [12] Generated 1000 10 100K
2D-SS-varden 2 10M [12] Generated 1000 10 100K
3D-Hacc 3 ∼37M [18] Cosmology 0.042 10 1M
3D-SS-simden 3 10M [12] Generated 1000 10 1M
3D-SS-varden 3 10M [12] Generated 1000 10 1M
5D-SS-simden 5 10M [12] Generated 1000 10 1M
5D-SS-varden 5 10M [12] Generated 1000 10 1M
7D-SS-simden 7 10M [12] Generated 1000 10 1M
7D-SS-varden 7 10M [12] Generated 1000 10 1M
7D-Household 7 ∼2M [10] Power 2.0 10 1M

implementations, it uses pointer jumping, a technique to shorten
paths of the trees (associated with disjoint sets) during the Find
operation. Specifically, the work uses “intermediate pointer jump-
ing”, which compresses the path of all elements encountered on a
way to the tree root by making every element skip over the next
element, halving the path length in each traversal. Because the path
compression does not guarantee that all paths are fully compressed
at the end of the main phase (i.e., that the label of each point in
the same cluster is identical at the end of the main phase), an extra
finalization phase is introduced to make each point directly to the
representative.

5 EXPERIMENTAL RESULTS

In our implementation, we used ArborX [24], an open-source library
for the tree-based implementations using Kokkos library [39] for
a device-independent programming model. Kokkos offers parallel
execution patterns (parallel loops, reductions, scans) to abstract
from a specific hardware. Kokkos also provides abstractions for
execution andmemory resources. The Kokkos library1 provides C++
abstractions and supports hardware through backends, including
Nvidia GPUs (Cuda), AMD GPUs (HIP), and serial hosts (Serial).

The implemented algorithms are available in the main ArborX
repository2.

The ArborX library provides several features suitable for our
implementation. It allows for an early traversal termination, which
is used in the preprocessing phases of both FDbscan and FDbscan-
DenseBox. The callback functionality of the library allows execu-
tion of a user-provided code on a positive match, which is used
both in preprocessing for the neighbor count and in the main phase
for the Union-Find kernels.
Testing environment. The numerical studies presented in the
paper were performed using AMD EPYC 7763 (64 cores3), Nvidia
A100 (40GB) and a single GCD (Graphics Compute Die) of AMD
MI250X4. The chips are based on TSMC’s N7+, N7 and N6 tech-
nology, respectively, and can be considered to belong to the same
generation.

1https://github.com/kokkos/kokkos
2https://github.com/arborx/ArborX
3Run as 56 cores, with 8 cores dedicated to OS processes
4Currently, HIP (Heterogeneous-computing Interface for Portability) – the program-
ming interface provided by AMD – only allows the use of each GCD as an independent
GPU.

We used Clang 14.0.0 compiler for AMD EPYC 7763, NVCC 11.5
for Nvidia A100, and ROCm 5.4.3 for AMD MI250X.
Datasets. As mentioned in Section 1, in this work we focus on the
low-dimensional data. For our experiments, we used a combination
of artificial and real-world datasets listed in Table 1 to comprehen-
sively evaluate our algorithm and meet our study goals. The GPS
locations (2D-NGSIM and 2D-Porto), cosmology (3D-HACC) and
electric power consumption (7D-Household) datasets replicate real-
world conditions. The datasets generated with [12] allow us to ex-
plore more structure and dimensionalities. SS-simden and SS-varden
refer to the datasets with similar-density and variable-density clus-
ters, respectively.

5.1 Parallel algorithms comparison

In this Section, we compare the performance of FDbscan and
FDbscan-DenseBox algorithms with several other implementa-
tions: G-Dbscan [2] (only available for 2D datasets), Pdsdbscan-
S [31] and Tepp [40]. We did not include the results for CUDA-
DClust [6] as it was many orders of magnitude slower. Unfortu-
nately, we were also not able to compare to the recent CUDA-
DClust+ [34] code5, as it consistently produced wrong results and
did not match the performance reported in [34]; the problem seems
to be related to thrust::equal_range routines and is being inves-
tigated by the original authors at the time of this publication.

We study the behavior of the algorithms for each dataset varying
one of the three parameters, 𝜀, minPts, and the number of drawn
random samples, while keeping the other two fixed at the default
values shown in Table 1. The default number of samples for the
2D datasets was chosen to be lower to accomodate G-Dbscan’s
memory consumption.

In this Section, the G-Dbscan, FDbscan and FDbscan-
DenseBox experiments were performed on Nvidia A100.

Impact of 𝜀. Figure 3 demonstrates the impact of the parameter
𝜀 on the execution times while keeping minPts and problem size
fixed at the default values. Increasing 𝜀 increases the size of each
neighborhood 𝑁𝜀 (𝑥), thus increasing the cluster sizes. The range
of 𝜀 for each problem was chosen in such a way that the number
of clusters qualitatively changes from many small clusters to a few
large ones.

We first observe that for the 2D cases where G-Dbscan was
able to run, it is an obvious outlier in terms of performance. Gen-
erally, Pdsdbscan-S is the second slowest, running significantly
slower than Tepp and FDbscan, particularly for larger values of
𝜀. Tepp is competitive with FDbscan in some situations, particu-
larly for large values of 𝜀 and 2D-Porto, where the densities of the
data points are high and FDbscan performs a lot of unnecessary
computations. However, FDbscan-DenseBox outperforms Tepp
in almost all situations, except for the 2D-Porto and the largest
values of 𝜀 for 2D-SS-simden, 2D-SS-varden. FDbscan outperforms
FDbscan-DenseBox for lower values of 𝜀 in most situations, which
corresponds to situations with lower density values, and thus few
(if any) dense cells. The rule of thumb is to use FDbscan for very
low sparsity situations, and FDbscan-DenseBox otherwise.

5https://github.com/l3lackcurtains/fast-cuda-gpu-dbscan

508

https://github.com/kokkos/kokkos
https://github.com/arborx/ArborX
https://github.com/l3lackcurtains/fast-cuda-gpu-dbscan

Fast tree-based algorithms for DBSCAN for low-dimensional data on GPUs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

(a) 2D-NGSIM (b) 2D-Porto (c) 2D-SS-simden (d) 2D-SS-varden

(e) 3D-Hacc (f) 3D-SS-varden (g) 3D-SS-varden (h) 5D-SS-simden

(i) 5D-SS-varden (j) 7D-SS-simden (k) 7D-SS-varden (l) 7D-Household

Figure 3: Impact of the 𝜀 parameter on the execution time.

It is important to note the few missing data points in the plots.
First, we see that FDbscan-DenseBox is completely missing in
2D-NGSIM , and in several lower 𝜀 values for 7D-SS-simden and
7D-SS-varden. As we mentioned at the end of Section 4.2, a combi-
nation of the domain size and the values of 𝜀 may lead to FDbscan-
DenseBox losing precision and potentially leading to the wrong
results. This is exactly what is happening here, and our implemen-
tation of FDbscan-DenseBox aborted the computation. We also
observe missing data for Pdsdbscan-S for 7D-Household, where it
ran out of memory.

Another interesting observation is the expected dependence
of FDbscan on the 𝜀 parameter: larger values of 𝜀 result in the
longer runtimes, as it increases the size of 𝑁𝜀 (𝑥) neighborhoods,
and FDbscan has no mechanisms to avoid additional computations.
On the other hand, the time for FDbscan-DenseBox is relatively
stable for the full range of 𝜀.

Impact of minPts. Figure 4 shows the effect of varying the minPts
parameter while keeping 𝜀 and the problem size fixed at the default
values.

We observed that in most situations the algorithms exhibit lit-
tle change in the behavior, except for FDbscan-DenseBox which
trends slower for larger minPts values as the number of the dense
cells decreases. For many datasets, FDbscan performs faster than
FDbscan-DenseBox due to the chosen fixed value of 𝜀. The growth
in FDbscan results is explained by the longer preprocessing phase,
as the early termination only happens once minPts neighbors are
found; the main phase is almost unaffected by theminPts parameter.
The preprocessing phase of FDbscan-DenseBox is affected in a

similar way, but in addition, the main phase also takes longer due
to larger mixed hierarchy sizes due to lower number of dense cells.
This is particularly noticeable in 2D-Porto and 7D-Household. We
see that either FDbscan or FDbscan-DenseBox are still universally
the fastest algorithms, often by a large margin.

Impact of the number of points in the dataset. For our final compari-
son, we varied the size of the problem by increasing the number
of drawn samples for each dataset while keeping the values of 𝜀
and minPts fixed. We chose random sampling as we could not rely
on the organization points in the datasets. However, this results in
the problems becoming denser with increasing size, affecting the
performance in addition to the increases in size.

Figure 5 presents the results, shown in log-log scale. Tepp and
FDbscan-DenseBox scale similarly and slower than Pdsdbscan-
S and FDbscan-DenseBox. Between FDbscan and FDbscan-
DenseBox, for almost all datasets there is a point at which the
FDbscan-DenseBox becomes faster due to reaching sufficient den-
sity. Both G-Dbscan and Pdsdbscan-S are clear outliers in terms
of performance.

In addition to missing FDbscan-DenseBox data points for the
2D-NGSIM due to the loss of precision, we also note G-Dbscan run-
ning out of memory at very modest problem sizes. This is expected
as G-Dbscan stores the full adjacency matrix data, so that even
40GB A100 memory is not sufficient for storage.

Summary. FDbscan and FDbscan-DenseBox clearly prove to be
very competitive algorithms, often outperforming other existing
algorithms by an order of magnitude, with FDbscan-DenseBox

509

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Prokopenko et al.

(a) 2D-NGSIM (b) 2D-Porto (c) 2D-SS-simden (d) 2D-SS-varden

(e) 3D-Hacc (f) 3D-SS-varden (g) 3D-SS-varden (h) 5D-SS-simden

(i) 5D-SS-varden (j) 7D-SS-simden (k) 7D-SS-varden (l) 7D-Household

Figure 4: Impact of theminPts parameter on the execution time.

(a) 2D-NGSIM (b) 2D-Porto (c) 2D-SS-simden (d) 2D-SS-varden

(e) 3D-Hacc (f) 3D-SS-varden (g) 3D-SS-varden (h) 5D-SS-simden

(i) 5D-SS-varden (j) 7D-SS-simden (k) 7D-SS-varden (l) 7D-Household

Figure 5: Impact of the number of samples drawn from a dataset on the execution time.

510

Fast tree-based algorithms for DBSCAN for low-dimensional data on GPUs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Figure 6: Rate comparison across different hardware architectures.

being the typically the much faster of the two. Both algorithms
proposed in this paper do not suffer from the significant memory
limitations. The closest competitor to the algorithms is the Tepp
multi-threaded implementation.

5.2 Performance portability

In this Section, we discuss the performance portability of the im-
plemented algorithms through the use of the Kokkos library [39].
Figure 6 shows the performance of the FDbscan-DenseBox algo-
rithm on different hardware: AMD EPYC 7763 (through OpenMP
backend), AMD MI250X (through HIP backend), and Nvidia A100
(through CUDA backend). Tepp baseline is provided for AMD EPYC
7763. The results are presented as the rate, million features (product
of the number of points and dimension) per second.

We see that AMD MI250X is 1.2-2.3× slower than Nvidia A100,
which is explained by using a single GCD. The OpenMP implemen-
tation is 1.0-5.7× slower than Tepp, and is expected given that the
algorithm is designed for GPU architectures.

Similar performance portability results hold for the FDbscan
algorithm.

6 CONCLUSIONS AND FUTUREWORK

We presented a general parallel approach for Dbscan on GPUs, and
introduced two algorithms based on a bounding volume hierarchy
tree implementation. These algorithms were evaluated against the
other existing CPU and GPU algorithms, demonstrating their excel-
lent performance. The algorithms were shown to be performance
portable and able to run on a variety of hardware architectures, in-
cluding multi-threaded CPUs and GPUs. We showed that a special
treatment of dense areas by using an auxiliary Cartesian grid is
advantageous in many situations.

Algorithmically, we see a number of research directions to pur-
sue. Similar to [13], we envision using a heuristic to automatically
switch between FDbscan and FDbscan-DenseBox for a given prob-
lem. An introduction of a batchedmode is of interest for applications
where the data and the index do not fit in the GPU memory. Other
directions of research include combining the proposed approach
with distributed computations, lowering memory requirements of
the used search index, and incorporating other Dbscan variants
such as Dbscan*.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Eleazar Leal for providing the source
code for the algorithms used in [29] paper for comparison. This
research was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of EnergyOffice
of Science and the National Nuclear Security Administration. This
research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

REFERENCES

[1] 2018. Next Generation Simulation (NGSIM) Vehicle Trajectories and Support-
ing Data. Available online: https://catalog.data.gov/dataset/next-generation-
simulation-ngsim-vehicle-trajectories-and-supporting-data. Accessed: 2021-03-
06.

[2] Guilherme Andrade, Gabriel Ramos, Daniel Madeira, Rafael Sachetto, Renato
Ferreira, and Leonardo Rocha. 2013. G-DBSCAN: A GPU Accelerated Algorithm
for Density-based Clustering. Procedia Computer Science 18 (Jan. 2013), 369–378.
https://doi.org/10.1016/j.procs.2013.05.200

[3] Domenica Arlia and Massimo Coppola. 2001. Experiments in Parallel Clustering
with DBSCAN. In Euro-Par 2001 Parallel Processing, Rizos Sakellariou, John Gurd,
Len Freeman, and John Keane (Eds.). Springer, Berlin, Heidelberg, 326–331. https:
//doi.org/10.1007/3-540-44681-8_46

[4] J. L. Bentley. 1975. Multidimensional Binary Search Trees Used for Associative
Searching. Communication of the ACM 18, 9 (September 1975), 509–517. https:
//doi.org/10.1145/361002.361007

[5] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. 2001. Searching in
high-dimensional spaces: Index structures for improving the performance of
multimedia databases. Comput. Surveys 33, 3 (Sept. 2001), 322–373. https:
//doi.org/10.1145/502807.502809

[6] Christian Böhm, Robert Noll, Claudia Plant, and Bianca Wackersreuther. 2009.
Density-based clustering using graphics processors. In Proceedings of the 18th
ACM conference on Information and knowledge management (CIKM ’09). As-
sociation for Computing Machinery, Hong Kong, China, 661–670. https:
//doi.org/10.1145/1645953.1646038

[7] Ricardo J. G. B. Campello, DavoudMoulavi, and Joerg Sander. 2013. Density-Based
Clustering Based on Hierarchical Density Estimates. In Advances in Knowledge
Discovery and Data Mining (Lecture Notes in Computer Science), Jian Pei, Vincent S.
Tseng, Longbing Cao, Hiroshi Motoda, and Guandong Xu (Eds.). Springer, Berlin,
Heidelberg, 160–172. https://doi.org/10.1007/978-3-642-37456-2_14

[8] Yewang Chen, Lida Zhou, Songwen Pei, Zhiwen Yu, Yi Chen, Xin Liu, Jixiang Du,
and Naixue Xiong. 2019. KNN-BLOCK DBSCAN: Fast Clustering for Large-Scale
Data. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019), 1–15.
https://doi.org/10.1109/TSMC.2019.2956527

[9] B. Dai and I. Lin. 2012. Efficient Map/Reduce-Based DBSCAN Algorithm with
Optimized Data Partition. In 2012 IEEE Fifth International Conference on Cloud
Computing. 59–66. https://doi.org/10.1109/CLOUD.2012.42

[10] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

511

https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.1007/3-540-44681-8_46
https://doi.org/10.1007/3-540-44681-8_46
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/502807.502809
https://doi.org/10.1145/502807.502809
https://doi.org/10.1145/1645953.1646038
https://doi.org/10.1145/1645953.1646038
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1109/TSMC.2019.2956527
https://doi.org/10.1109/CLOUD.2012.42
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Prokopenko et al.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD’96). AAAI Press, 226–231.

[12] Junhao Gan and Yufei Tao. 2017. On the Hardness and Approximation of Eu-
clidean DBSCAN. ACM Transactions on Database Systems 42, 3 (July 2017),
14:1–14:45. https://doi.org/10.1145/3083897

[13] Michael Gowanlock. 2019. Hybrid CPU/GPU clustering in shared memory on
the billion point scale. In Proceedings of the ACM International Conference on Su-
percomputing (ICS ’19). Association for Computing Machinery, Phoenix, Arizona,
35–45. https://doi.org/10.1145/3330345.3330349

[14] Michael Gowanlock, Cody M. Rude, David M. Blair, Justin D. Li, and Victor
Pankratius. 2017. Clustering Throughput Optimization on the GPU. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 832–841.
https://doi.org/10.1109/IPDPS.2017.17

[15] M. Gowanlock, C. M. Rude, D. M. Blair, J. D. Li, and V. Pankratius. 2019. A
Hybrid Approach for Optimizing Parallel Clustering Throughput using the GPU.
IEEE Transactions on Parallel and Distributed Systems 30, 4 (April 2019), 766–777.
https://doi.org/10.1109/TPDS.2018.2869777

[16] A. Guttman. 1984. R-trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of the 1984 ACM SIGMOD International Conference on Management of
Data (Boston, Massachusetts) (SIGMOD ’84). ACM, New York, NY, USA, 47–57.
https://doi.org/10.1145/602259.602266

[17] Markus Götz, Christian Bodenstein, and Morris Riedel. 2015. HPDBSCAN: highly
parallel DBSCAN. In Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments (MLHPC ’15). Association for Computing
Machinery, Austin, Texas, 1–10. https://doi.org/10.1145/2834892.2834894

[18] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann,
David Daniel, Patricia Fasel, Vitali Morozov, George Zagaris, Tom Peterka, et al.
2016. HACC: Simulating sky surveys on state-of-the-art supercomputing archi-
tectures. New Astronomy 42 (2016), 49–65.

[19] Yaobin He, Haoyu Tan, Wuman Luo, Huajian Mao, Di Ma, Shengzhong Feng, and
Jianping Fan. 2011. MR-DBSCAN: An Efficient Parallel Density-Based Clustering
Algorithm Using MapReduce. In 2011 IEEE 17th International Conference on Par-
allel and Distributed Systems. 473–480. https://doi.org/10.1109/ICPADS.2011.83

[20] Xu Hu, Jun Huang, and Minghui Qiu. 2017. A Communication Efficient Parallel
DBSCAN Algorithm based on Parameter Server. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management (CIKM ’17). Association
for Computing Machinery, Singapore, Singapore, 2107–2110. https://doi.org/10.
1145/3132847.3133112

[21] Jayadharini Jaiganesh and Martin Burtscher. 2018. A High-performance Con-
nected Components Implementation for GPUs. In Proceedings of the 27th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing (HPDC
’18). ACM, New York, NY, USA, 92–104. https://doi.org/10.1145/3208040.3208041

[22] T. Karras. 2012. Maximizing Parallelism in the Construction of BVHs, Octrees, and
K-d Trees. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference
on High-Performance Graphics (EGGH-HPG’12). Eurographics Association, Goslar
Germany, Germany, 33–37. https://doi.org/10.2312/EGGH/HPG12/033-037

[23] Sonal Kumari, Poonam Goyal, Ankit Sood, Dhruv Kumar, Sundar Balasubra-
maniam, and Navneet Goyal. 2017. Exact, Fast and Scalable Parallel DBSCAN
for Commodity Platforms. In Proceedings of the 18th International Conference on
Distributed Computing and Networking (ICDCN ’17). Association for Computing
Machinery, Hyderabad, India, 1–10. https://doi.org/10.1145/3007748.3007773

[24] D. Lebrun-Grandié, A. Prokopenko, B. Turcksin, and S. R. Slattery. 2020. ArborX:
A Performance Portable Geometric Search Library. ACM Trans. Math. Software
47, 1 (Dec. 2020), 2:1–2:15. https://doi.org/10.1145/3412558

[25] Woong-Kee Loh and Hwanjo Yu. 2015. Fast density-based clustering through
dataset partition using graphics processing units. Information Sciences 308 (July
2015), 94–112. https://doi.org/10.1016/j.ins.2014.10.023

[26] Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura Ricci. 2016.
NG-DBSCAN: scalable density-based clustering for arbitrary data. Proceedings
of the VLDB Endowment 10, 3 (Nov. 2016), 157–168. https://doi.org/10.14778/
3021924.3021932

[27] Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael J. Doyle, Michael Guthe,
and Jiří Bittner. 2021. A Survey on Bounding Volume Hierarchies for Ray Tracing.
Computer Graphics Forum 40, 2 (2021), 683–712. https://doi.org/10.1111/cgf.
142662

[28] Luis Moreira-Matias, Joao Gama, Michel Ferreira, Joao Mendes-Moreira, and Luis
Damas. 2013. Predicting taxi–passenger demand using streaming data. IEEE
Transactions on Intelligent Transportation Systems 14, 3 (2013), 1393–1402.

[29] Hamza Mustafa, Eleazar Leal, and Le Gruenwald. 2019. An Experimental Compar-
ison of GPU Techniques for DBSCAN Clustering. In 2019 IEEE International Con-
ference on Big Data (Big Data). 3701–3710. https://doi.org/10.1109/BigData47090.
2019.9006169

[30] Vani Nagarajan and Milind Kulkarni. 2023. RT-DBSCAN: Accelerating DBSCAN
using Ray Tracing Hardware. https://doi.org/10.48550/arXiv.2303.09655

[31] Md. Mostofa Ali Patwary, Suren Byna, Nadathur Rajagopalan Satish, Narayanan
Sundaram, Zarija Lukić, Vadim Roytershteyn, Michael J. Anderson, Yushu Yao,
Prabhat, and Pradeep Dubey. 2015. BD-CATS: big data clustering at trillion
particle scale. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–12. https://doi.org/
10.1145/2807591.2807616

[32] Md. Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik
Manne, and Alok Choudhary. 2012. A new scalable parallel DBSCAN algorithm
using the disjoint-set data structure. In SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
1–11. https://doi.org/10.1109/SC.2012.9

[33] Md. Mostofa Ali Patwary, Nadathur Satish, Narayanan Sundaram, Fredrik Manne,
Salman Habib, and Pradeep Dubey. 2014. Pardicle: Parallel Approximate Density-
Based Clustering. In SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 560–571. https://doi.
org/10.1109/SC.2014.51

[34] Madhav Poudel and Michael Gowanlock. 2021. CUDA-DClust+: Revisiting Early
GPU-Accelerated DBSCAN Clustering Designs. In 2021 IEEE 28th International
Conference on High Performance Computing, Data, and Analytics (HiPC). 354–363.
https://doi.org/10.1109/HiPC53243.2021.00049

[35] Christopher Sewell, Li-ta Lo, Katrin Heitmann, Salman Habib, and James Ahrens.
2015. Utilizing many-core accelerators for halo and center finding within a
cosmology simulation. In 2015 IEEE 5th Symposium on Large Data Analysis and
Visualization (LDAV). 91–98. https://doi.org/10.1109/LDAV.2015.7348076

[36] Hwanjun Song and Jae-Gil Lee. 2018. RP-DBSCAN: A Superfast Parallel DBSCAN
Algorithm Based on Random Partitioning. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). Association for Computing
Machinery, Houston, TX, USA, 1173–1187. https://doi.org/10.1145/3183713.
3196887

[37] Robert Endre Tarjan. 1979. A class of algorithms which require nonlinear time
to maintain disjoint sets. J. Comput. System Sci. 18, 2 (April 1979), 110–127.
https://doi.org/10.1016/0022-0000(79)90042-4

[38] Rajeev J. Thapa, Christian Trefftz, and Greg Wolffe. 2010. Memory-efficient im-
plementation of a graphics processor-based cluster detection algorithm for large
spatial databases. In 2010 IEEE International Conference on Electro/Information
Technology. 1–5. https://doi.org/10.1109/EIT.2010.5612134

[39] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,
Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan
Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell,
Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,
and Jeremiah Wilke. 2022. Kokkos 3: programming model extensions for the
exascale era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (April
2022), 805–817. https://doi.org/10.1109/TPDS.2021.3097283 Conference Name:
IEEE Transactions on Parallel and Distributed Systems.

[40] Yiqiu Wang, Yan Gu, and Julian Shun. 2020. Theoretically-Efficient and Prac-
tical Parallel DBSCAN. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’20). Association for Computing Ma-
chinery, Portland, OR, USA, 2555–2571. https://doi.org/10.1145/3318464.3380582

[41] Benjamin Welton and Barton P. Miller. 2014. The Anatomy of Mr. Scan: A
Dissection of Performance of an Extreme Scale GPU-Based Clustering Algorithm.
In 2014 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems. 54–60. https://doi.org/10.1109/ScalA.2014.10

[42] Benjamin Welton, Evan Samanas, and Barton P. Miller. 2013. Mr. Scan: Extreme
scale density-based clustering using a tree-based network of GPGPU nodes. In SC
’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. 1–11. https://doi.org/10.1145/2503210.2503262

[43] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. 1999. A Fast Parallel Clustering
Algorithm for Large Spatial Databases. Data Mining and Knowledge Discovery 3,
3 (Sept. 1999), 263–290. https://doi.org/10.1023/A:1009884809343

512

https://doi.org/10.1145/3083897
https://doi.org/10.1145/3330345.3330349
https://doi.org/10.1109/IPDPS.2017.17
https://doi.org/10.1109/TPDS.2018.2869777
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/2834892.2834894
https://doi.org/10.1109/ICPADS.2011.83
https://doi.org/10.1145/3132847.3133112
https://doi.org/10.1145/3132847.3133112
https://doi.org/10.1145/3208040.3208041
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.1145/3007748.3007773
https://doi.org/10.1145/3412558
https://doi.org/10.1016/j.ins.2014.10.023
https://doi.org/10.14778/3021924.3021932
https://doi.org/10.14778/3021924.3021932
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1109/BigData47090.2019.9006169
https://doi.org/10.1109/BigData47090.2019.9006169
https://doi.org/10.48550/arXiv.2303.09655
https://doi.org/10.1145/2807591.2807616
https://doi.org/10.1145/2807591.2807616
https://doi.org/10.1109/SC.2012.9
https://doi.org/10.1109/SC.2014.51
https://doi.org/10.1109/SC.2014.51
https://doi.org/10.1109/HiPC53243.2021.00049
https://doi.org/10.1109/LDAV.2015.7348076
https://doi.org/10.1145/3183713.3196887
https://doi.org/10.1145/3183713.3196887
https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1109/EIT.2010.5612134
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1145/3318464.3380582
https://doi.org/10.1109/ScalA.2014.10
https://doi.org/10.1145/2503210.2503262
https://doi.org/10.1023/A:1009884809343

	Abstract
	1 Introduction
	2 Background
	2.1 DBSCAN algorithm
	2.2 Related work

	3 Parallel DBSCAN framework for GPUs
	3.1 Disjoint-set based DBSCAN
	3.2 Parallel disjoin-set based DBSCAN

	4 Tree-based algorithms
	4.1 FDBSCAN
	4.2 FDBSCAN-DenseBox
	4.3 Union-Find

	5 Experimental results
	5.1 Parallel algorithms comparison
	5.2 Performance portability

	6 Conclusions and future work
	Acknowledgments
	References

